
The study of cosmic rays with energies greater than 5 EeV by radio method

Presenter: Igor Petrov

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy.

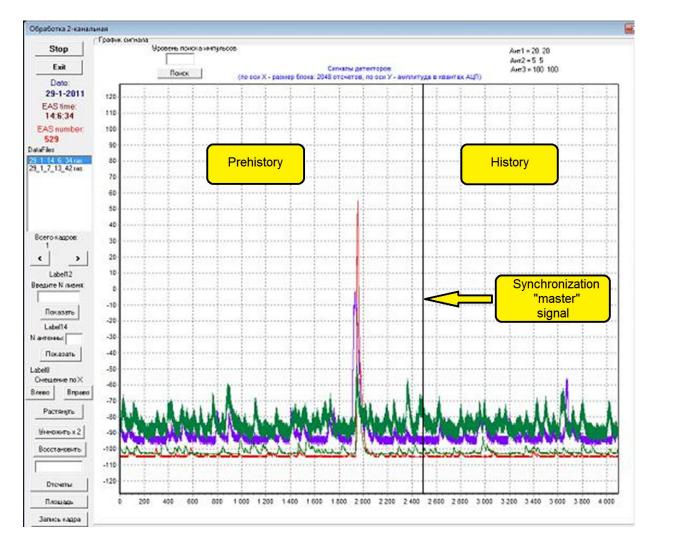
The Yakutsk array

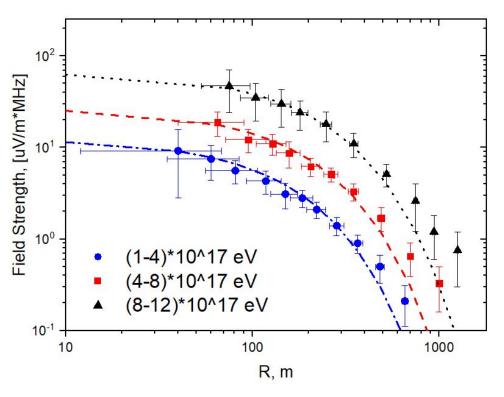
58 stations with scintillation detectors;

27 integral 3 track Cherenkov

detectors;

5 muon detectors;

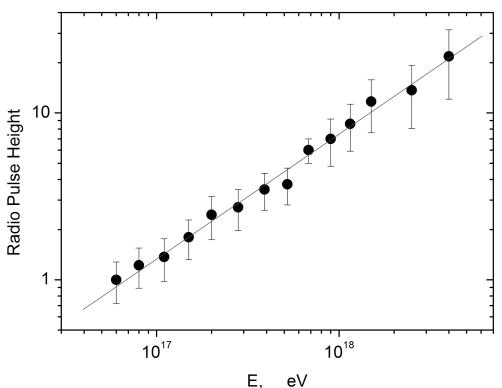

5 muon detector
6 antennas


Energy range: $10^{15} - 10^{20} eV$

Area of the array: $\sim 8 \text{ km}^2$.

The array operates from September to April

LDF of Air Shower Radio Emission E≥10¹⁷ eV


Average LDF for three energies:

$$\theta \leq 45^{\circ}$$
;

Axii of showers within 500 m;

SNR
$$\geq 5$$
.

Radio emission amplitude dependence on energy of the shower

$$\varepsilon_{EW} = (1,35 \pm 0.06) \cdot \left(\frac{E}{10^{17}}\right)^{0.74 \pm 0.03} \frac{\chi^2}{dof} = 0.1$$

Air Shower Event with Energy $E > 10^{19} \text{ eV}$

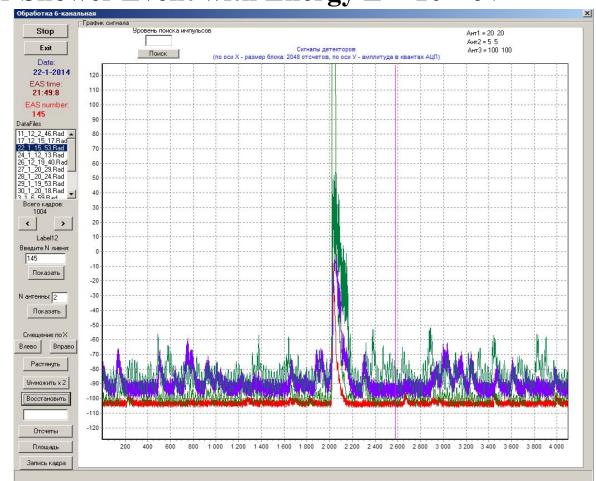
Date:

22. 01. 2014

Time:

21:49:08

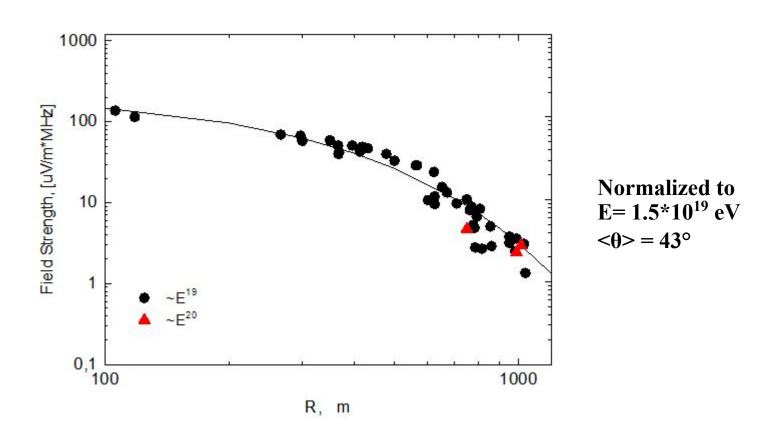
Zenith angle:


 $\theta = 47^{\circ}$

Azimuth angle:

 $\Psi = 189^{\circ}$

Energy:


 $E_0 = 1,11.10^{19} \text{ eV}$

List of Air Showers with Energy $\geq 10^{19}$ eV Registered by Yakutsk array Antennas

Data	θ,	ψ,	E ₀ ,	Αν,	R,
	deg	deg	eV	μV·m ⁻¹ ·MHz ⁻¹	m
16.11.86	74	180	3.1·10 ¹⁹	58.0	300
16.12.87	71	178	3·10 ¹⁹	40.0	367
21.02.88	70	210	10 ¹⁹	3.1, 3.8	1030, 950
09.03.88	36	125	9·10 ¹⁸	6.2	792
07.05.89	59	168	1.1020	62.5	750
10.03.11	51	239	1.1·10 ¹⁹	89, 43, 5.8	350, 413, 604
16.05.11	69	99	1.6-10 ¹⁹	33, 29, 40	501, 564, 479
31.12.11	15	165	1.1·10 ¹⁹	1.2, 1.0, 2.9	950, 980, 860
12.04.12	8	222	1.3·10 ¹⁹	4.1, 2.8, 6.0	762, 785, 626
04.05.13	46	295	1.1·10 ¹⁹	5.3, 6.0, 12	776, 768, 368
12.12.13	15	297	1.2·10 ¹⁹	5.1, 8.4, 3.6	855, 806, 988
03.10.13	21	21	1.1·10 ¹⁹	9.1, 11, 2.7	419, 396, 815
22.03.13	46	4	1.8·10 ¹⁹	41, 48, 78	418, 432, 366
02.01.14	48	207	7.9·10 ¹⁹	16.3, 19.4	1013, 988
22.01.14	47	189	1.1·10 ¹⁹	107.6, 119.6	297, 266
05.02.14	26	343	3.5·10 ¹⁹	3.4, 5.6	671, 627
02.03.14	30	217	1.2·10 ¹⁹	4.9, 6.0, 7.8	782, 749, 708
04.01.18	26	211	1.6·10 ¹⁹	1.3	1038
05.01.18	45	303	2.1·10 ¹⁹	180, 150	106, 118

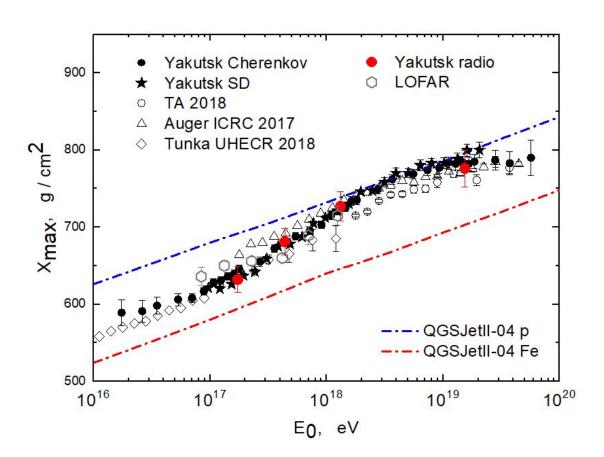
LDF of Air Shower Radio Emission E≥10¹⁹ eV

X_{max} estimation

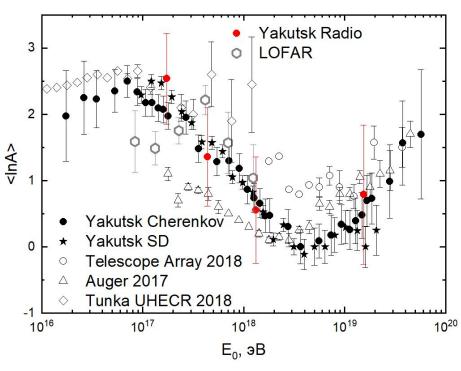
Depth of X_{max} is estimated by

$$X_{\text{max}} = (8 \pm 28) + P_1 \cdot (217 \pm 11)$$
 (1)

$$X_{\text{max}} = (281 \pm 9) + P_2 \cdot (33 \pm 2)$$
 (2)


$$P_1 = A(80)/A(200)$$

$$P_2 = A(175)/A(725)$$


Eq. (1) is used for air showers with energy $<3*10^{18}$ eV

Eq. (2) is used for air showers with energy ≥3*10¹⁸ eV

<X_{max}> vs E₀

Mass composition

$$\langle \ln A \rangle = \left(\frac{X_{\text{max}}^{\text{exp}} - X_{\text{max}}^{P}}{X_{\text{max}}^{Fe} - X_{\text{max}}^{P}} \right) \cdot \ln A_{F}$$

Conclusion

- •Radio experiments expands the possibilities of experimentally studying the characteristics of air showers;
- •Energy of the showers was determined by radio emission signal amplitude and depth of maximum by ratio of amplitudes at different distances;
- •Depths of maximum development estimated for 4 different energies by radio measurements are in agreement with depths of maximum development estimated by optical methods;

Thank you for your attention!