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ENDA

The Electron–Neutron Detector Array (ENDA) is being created in China within the
large high-altitude air shower observatory (LHAASO) project.

Some ENDA-INR parameters: Digitization step - 32 nsec, detector trigger threshold
- 3 mV, distance between detectors - 5 m.

Figure 1: Installation ENDA-LHAASO
Figure 2: ENDA-INR configuration and

installation location
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Direction and core reconstruction

Standard approach: Maximum Likelihood Estimation with NKG
parametrization for LDF (see appendix) and approximation of flat shower front
for direction reconstruction.
ML: Convolutional Neural Nets or Artificial Neural Nets with different target
variables parametrization. Features - energy deposit, response times, number of
neutrons in each detector.

Figure 3: Core resolution for different
primaries

Figure 4: Distribution by the angle of
deviation of the guiding vector of the

arrival of the EAS
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Energy reconstruction

Standard approach:
lg(ERec.

0 ) = A×lg(Ne) + C or lg(ERec.
0 ) = B×lg(Nn) + D or Linear regression

with polynomial features.

ML approach:
Algorithm: GBDT regression with XGBoosta and ANN.
Features: [𝜃, lgNe ,Nn, s, number of triggered detectors, Qmax ,Rfrom center ] or
[𝜃, lgΣ𝜌,Nn,Qmax ,Rfrom center , number of triggered detectors].

MC Simulation: balanced dataset with proton and iron primaries.
E0 ∈ [1 ÷ 300] PeV with differential slope -2.7.
Selection Cuts: 𝜃 < 30∘, lgNe > 5, number of triggered detectors > 7

Train set: Valid set: Test set = 3:1:1

aChen T., Guestrin C. Xgboost: A scalable tree boosting system //Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining.
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Energy reconstruction

Figure 5: Distribution of E rec.
0 /E true

0

Figure 6: E rec.
0 vs E true

0 for standard
approach

Figure 7: Feature importance

Figure 8: E rec.
0 vs E true

0 for GBDT
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Uncertainty estimation
Motivation

Standard approach: Events with large fluctuations in the development of
a shower can lead to the inapplicability of the selected a priori distribution in the
likelihood function.

ML approach: Neural network is a "black box". In classification task softmax
probability doesn’t estimate uncertaintyb.

Figure 9: Deep neural network
determined unrecognizable images as
familiar objects with high confidence

bNguyen A., et al. "Deep neural networks are easily fooled: High confidence predictions for
unrecognizable images." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015.
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Two types of uncertainty

It is possible to divide the types of uncertainty into two classes. First called data
uncertainty, which arises due to inherent class overlap or noise in the data. And
uncertainty due to the model’s inherent lack of knowledge about inputs from regions
either far from the training data or sparsely covered by it, called knowledge
uncertaintyc,d.
To estimate the knowledge uncertainty, it is necessary to use Bayesian methods and
calculate the a posteriori distribution of the reconstructed parameters.

Figure 10: Data uncertainty (left), knowledge uncertainty (center and right)

cYarin Gal, Uncertainty in Deep Learning, Ph.D. thesis, University of Cambridge, 2016.
dAndrey Malinin, Uncertainty Estimation in Deep Learning with application to Spoken Language

Assessment, Ph.D. thesis, University of Cambridge, 2019.
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Uncertainty estimation (Standard approach)

Rao-Kramer inequality

D(𝜃) ≥ |j(𝜃)|−1,

where j(𝜃) = −E( 𝜕2 lnℒ
𝜕𝜃i𝜕𝜃j

)− Fisher ′s information,ℒ − Likelihood function.

Figure 11: Event with a small ΔR error Figure 12: Event with a big ΔR error
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Uncertainty estimation in ML
Existing solutions in experiments (Probalistic regression)

For regression model use Gaussian Negative Log Likelihood (GNLL) loss and
predict mean and variance of a normal distribution over the target variable y
for a given feature input.

Figure 13: A neural network architecture for IceCubea.

aAbbasi, R., et al. (2021). A convolutional neural network
based cascade reconstruction for the IceCube Neutrino Observatory.

GNLL

ℒ = ln(
√

2𝜋𝜎2) +
(y − 𝜇)2

2𝜎2 ,

where y - target variable,
𝜇, 𝜎2 −model prediction.

Disadvantage: Capture only
data uncertainty and doesn’t
capture knowledge uncertainty.
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Uncertainty estimation in ML
Ensembles approach

The approach is based on creating an independent ensemble of models, where each
model predicts its own mean and variance. Uncertainty in predictions caused by
uncertainty of knowledge and expressed as the level of dispersion between models in
the ensemble.

Figure 14: Data uncertainty estimation for
reconstructed parameters in compare with

𝒩 (0, 1)
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Features for primary particle identification
Task: Separation of proton showers from all others (He, N, Fe). Classes are balanced.

Figure 15: Distribution of Age

Figure 16: Distribution of E rec.
0

Figure 17: Distribution of Qmax

Figure 18: Distribution of Nn
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Primary particle identification

Figure 19: Confusion matrix over all
validation set

Figure 20: Confusion matrix of selected
events

Selection of events with low data and
knowledge uncertainty.
About ∼ 48% of events were dropped.

Metric Before, % After, %

Precision 90.1 98.5
Recall 90.1 98.5

F1-score 90.1 98.5
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Conclusions

ML algorithms allows to improve reconstruction performance of the
EAS parameters.
The presented algorithms allow us to estimate the uncertainty of the
found parameters of the EAS and will be tested on different models
of hadron interactions in the future.
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Thanks for your attention!

ISCRA 2023 Kyrinov et al. 15 / 19



Appendix
Standard approach

Maximum likelihood estimation using some analytic LDF parametrization:

𝜌e(r , s) =
1
r2m

Γ(4.5−s)
2𝜋Γ(s)Γ(4.5−2s) (

r+𝛿
rm

)s−2(1 + r+𝛿
rm

)s−4.5 — NKG, where 0.5
≤ s ≤ 1.5;

𝜌e(r) =
0.28
R2
ms

( r
Rms

)−1.2(1 + ( r
10Rms

)2)−0.6(1 + r
Rms

)−3.33 — Scaling
formalisme;

𝜌e(r , s⊥) = m−2𝜌NKG (
r
m
, s⊥) — Uchaikin distribution, where m = 0.78 -

0.21 s⊥ and 0.6 ≤ s⊥ ≤ 1.8;

𝜌e(r , s) =
1
r2m

Γ(4.5−s)
2𝜋Γ(s)Γ(4.5−2s) (

r+𝛿
rm

)s+𝛼(r)−2(1 + r+𝛿
rm

)s+𝛼(r)−4.5 — NKG with

local agef, where 0.5 ≤ s ≤ 1.5.

eLagutin A. A. (2002) Electron lateral distribution in air showers: scaling formalism and its
implications. Journal of Physics G: Nuclear and Particle Physics, 28(6), 1259.

fCapdevielle, J. N., Gawin, J. (1982). The radial electron distribution in extensive air showers.
Journal of Physics G: Nuclear Physics, 8(9), 1317.
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Appendix
Choosing LDF

In order to select best LDF for array we simulate position of shower cores in
circle with radius 15 m from center of array and select events that lie inside
array borders. Next we estimate core resolution and metrics from ML that
measure selection accuracy (precision) and size of selected events (recall).

TP - core selected inside array borders
(inside array in model)
FN - core selected outside array bor-
ders (inside array in model)
FP - core selected inside array borders
(outside array in model)

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2×Precision×Recall
Precision+Recall

Figure 21: Selection area (red square)
and simulation area (blue circle)
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Appendix
Choosing LDF

Shower core location error: ΔR =
√︀
(Xrec. − Xtrue)2 + (Yrec. − Ytrue)2

Core resolution - quantile
of 68% ΔR distribution.
Comparison of metrics for
presented LDFs:

Metric NKG Uchaikin NKG s(r)

Core resolution 2.1 m 1.82 m 1.7 m
Precision 71% 72% 73%
Recall 81% 81% 82%

F1-score 75% 76% 77%

Figure 22: Normalized LDF’s; (1) - NKG with s = 1.2, (2) -
Lagutin scaling for E0 = 1015eV , (3) - Uchaikin
distribution s⊥ = 1.6, (4) - NKG with local age (s = 1.2)
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Figure 23: Event with a small ΔR error Figure 24: Event with a big ΔR error
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