Techniques for data analysis and primary mass

reconstruction in the ENDA experiment

Kyrinov K. O., Kuleshov D. A., Stenkin Yu. V.,
Shchegolev O. B.

Institute for Nuclear Research, Russian Academy of Sciences

ISCRA-2023
June 27-29, 2023

ISCRA 2023 Kyrinov et al. 1/19



© ENDA

@ EAS parameters reconstruction
© Uncertainty estimation

@ Primary particle indentification
© Conclusions

O Appendix

ISCRA 2023 Kyrinov et al. 2/19



ENDA

The Electron—Neutron Detector Array (ENDA) is being created in China within the
large high-altitude air shower observatory (LHAASO) project.

Some ENDA-INR parameters: Digitization step - 32 nsec, detector trigger threshold
- 3 mV, distance between detectors - 5 m.
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Figure 1: Installation ENDA-LHAASO

Figure 2: ENDA-INR configuration and
installation location
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Direction and core reconstruction

Standard approach: Maximum Likelihood Estimation with NKG
parametrization for LDF (see appendix) and approximation of flat shower front
for direction reconstruction.

ML: Convolutional Neural Nets or Artificial Neural Nets with different target
variables parametrization. Features - energy deposit, response times, number of
neutrons in each detector.
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Figure 4: Distribution by the angle of
deviation of the guiding vector of the
arrival of the EAS

Figure 3: Core resolution for different
primaries
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Energy reconstruction

Standard approach:

Ig(EFe) = Axlg(Ne) + C or Ig(ES*) = BxIg(N,) + D or Linear regression
with polynomial features.

ML approach:

Algorithm: GBDT regression with XGBoost® and ANN.

Features: [0, IgNe, Ny, s, number of triggered detectors, Qmax, Rfrom center] OF
[0, 1gZp, Np, Qmax, Rfiom center, number of triggered detectors].

MC Simulation: balanced dataset with proton and iron primaries.
Eo € [1 = 300] PeV with differential slope -2.7.
Selection Cuts: 6 < 30°, IgN. > 5, number of triggered detectors > 7

Train set: Valid set: Test set = 3:1:1

®Chen T., Guestrin C. Xgboost: A scalable tree boosting system //Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining.
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Energy reconstruction
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Figure 5: Distribution of Eje-/Ef™e
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Figure 6: Ef*“ vs E}™e for standard
approach
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Figure 7: Feature importance
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Figure 8: Ef*“ vs Ej“e for GBDT
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Uncertainty estimation

Motivation

Standard approach: Events with large fluctuations in the development of

a shower can lead to the inapplicability of the selected a priori distribution in the
likelihood function.

ML approach: Neural network is a "black box". In classification task softmax
probability doesn't estimate uncertainty®.
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CIFAR-100’s apple misclassified as CIFAR-10's frog class with p > 0.9.
Figure 9: Deep neural network
determined unrecognizable images as
familiar objects with high confidence

b . . X .
Nguyen A., et al. "Deep neural networks are easily fooled: High confidence predictions for
unrecognizable images." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015.
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Two types of uncertainty

It is possible to divide the types of uncertainty into two classes. First called data
uncertainty, which arises due to inherent class overlap or noise in the data. And
uncertainty due to the model’s inherent lack of knowledge about inputs from regions
either far from the training data or sparsely covered by it, called knowledge
uncertainty<:d.

To estimate the knowledge uncertainty, it is necessary to use Bayesian methods and
calculate the a posteriori distribution of the reconstructed parameters.
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Figure 10: Data uncertainty (left), knowledge uncertainty (center and right)

Yarin Gal, Uncertainty in Deep Learning, Ph.D. thesis, University of Cambridge, 2016.

d
Andrey Malinin, Uncertainty Estimation in Deep Learning with application to Spoken Language
Assessment, Ph.D. thesis, University of Cambridge, 2019.
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Uncertainty estimation (Standard approach)

Rao-Kramer inequality

D(9) > 1j(0)I ™,

where j(0) = —E( g:”ggj) — Fisher’s information, L — Likelihood function.
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Figure 11: Event with a small AR error Figure 12: Event with a big AR error

ISCRA 2023 Kyrinov et al. 9/19



Uncertainty estimation in ML

Existing solutions in experiments (Probalistic regression)
For regression model use Gaussian Negative Log Likelihood (GNLL) loss and

predict mean and variance of a normal distribution over the target variable y
for a given feature input.
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Figure 13: A neural network architecture for lceCube?. data uncertainty and doesn't
capture knowledge uncertainty.

a . .
Abbasi, R., et al. (2021). A convolutional neural network
based cascade reconstruction for the IceCube Neutrino Observatory.
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Uncertainty estimation in ML

Ensembles approach

The approach is based on creating an independent ensemble of models, where each
model predicts its own mean and variance. Uncertainty in predictions caused by
uncertainty of knowledge and expressed as the level of dispersion between models in

the ensemble.
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Figure 14: Data uncertainty estimation for
reconstructed parameters in compare with
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Features for primary particle identification

Task: Separation of proton showers from all others (He, N, Fe). Classes are balanced.
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Figure 15: Distribution of Age
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Primary particle identification
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Figure 19: Confusion matrix over all
validation set
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Figure 20: Confusion matrix of selected
events
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@ ML algorithms allows to improve reconstruction performance of the
EAS parameters.

@ The presented algorithms allow us to estimate the uncertainty of the
found parameters of the EAS and will be tested on different models
of hadron interactions in the future.
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Thanks for your attention!
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Appendix

Standard approach

Maximum likelihood estimation using some analytic LDF parametrization:

@ pe(r,s) = %%(ﬁm@)s*(l + £H8)"%% — NKG, where 0.5

<s < 1.5

O pelr) = %2 () 2L+ (5952 )7) 01 + 7) 7> — Scaling
formalism®;

@ pe(r,s1) = m*pnke(%,s.) — Uchaikin distribution, where m = 0.78 -
0.21 s, and 0.6 <s;, <1.8;

© pe(r,5) = & srrraras s (52)7 073 (1 4 E2)eH ()45 — NKG with
local agef, where 0.5 < s < 1.5.

eLagutin A. A. (2002) Electron lateral distribution in air showers: scaling formalism and its
implications. Journal of Physics G: Nuclear and Particle Physics, 28(6), 1259.

fCapdevieIIe, J. N., Gawin, J. (1982). The radial electron distribution in extensive air showers.
Journal of Physics G: Nuclear Physics, 8(9), 1317.
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Appendix

Choosing LDF

In order to select best LDF for array we simulate position of shower cores in
circle with radius 15 m from center of array and select events that lie inside
array borders. Next we estimate core resolution and metrics from ML that
measure selection accuracy (precision) and size of selected events (recall).
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Figure 21: Selection area (red square)
and simulation area (blue circle)
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Appendix
Choosing LDF

Shower core location error: AR = \/(Xec. — Xtrue)2 + (Yrec. — Yirue)?

10° :
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d
Core resolution - quantile
of 68% AR distribution. «
Comparison of metrics for S 1o
presented LDFs:
Metric NKG  Uchaikin  NKG s(r)
Core resolution 2.1 m 1.82m 1.7m
Precision 71% 72% 3%
Recall 81% 81% 82%
F1l-score 75% 76% 7%
10° 10! 102 10°
R.m

Figure 22: Normalized LDF's; (1) - NKG with s = 1.2, (2) -
Lagutin scaling for Eg = 10%*%eV, (3) - Uchaikin
distribution s; = 1.6, (4) - NKG with local age (s = 1.2)
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Figure 23: Event with a small AR error
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Figure 24: Event with a big AR error




