QGSJET-III model: novel features

Sergey Ostanchenko

ISCRA-2021 Moscow, June 08-10, 2021

- Wealth of relevant experimental data from LHC: precision era for MC generators of hadronic collisions
- ullet \Rightarrow improvements of existing models
 - notably, new approaches for missing interaction mechanisms
 - also fine-tuning of model parameters

- Wealth of relevant experimental data from LHC: precision era for MC generators of hadronic collisions
- \Rightarrow improvements of existing models
 - notably, new approaches for missing interaction mechanisms
 - also fine-tuning of model parameters

Here few selected topics will be discussed

- treatment of higher twist corrections to hard parton scattering
- Good-Walker approach for diffraction and 'color fluctuations'
- pion exchange process in pp scattering and LHCf data

Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades ⇒ particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)

At very high energies, significant nonlinear effects expected

When parton density becomes high (high energy and/or small *b*):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production compensated by fusion of partons

Usually a picture of a crowded bus in mind (for sufficiently low Q^2)

• one often speaks about 'unitarity': impossible to squeeze too many partons in a small volume

Usually a picture of a crowded bus in mind (for sufficiently low Q^2)

- one often speaks about 'unitarity': impossible to squeeze too many partons in a small volume
- but: partons are meaningful only in the perturbative regime (relatively high Q²)
- partons are not observable

Usually a picture of a crowded bus in mind (for sufficiently low Q^2)

- one often speaks about 'unitarity': impossible to squeeze too many partons in a small volume
- but: partons are meaningful only in the perturbative regime (relatively high Q²)
- partons are not observable

Usually a picture of a crowded bus in mind (for sufficiently low Q^2)

- one often speaks about 'unitarity': impossible to squeeze too many partons in a small volume
- but: partons are meaningful only in the perturbative regime (relatively high Q^2)
- partons are not observable

Observable are (hard) interactions of partons

 here same argument applies: not too many boxing pairs at the same ring

Usually a picture of a crowded bus in mind (for sufficiently low Q^2)

- one often speaks about 'unitarity': impossible to squeeze too many partons in a small volume
- but: partons are meaningful only in the perturbative regime (relatively high Q^2)
- partons are not observable

Observable are (hard) interactions of partons

- here same argument applies: not too many boxing pairs at the same ring
- but: one may have arbitrary many virtual boxers (= partons) at the ring, if they don't fight (no problem with observations/unitarity)

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

For hard processes: 'semihard Pomeron' approach [Drescher, Hladik, SO, Pierog & Werner, 2001]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - \Rightarrow transverse expansion (finite Pomeron slope)
- DGLAP for hard cascades
- altogether: 'general Pomeron'

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

For hard processes: 'semihard Pomeron' approach [Drescher, Hladik, SO, Pierog & Werner, 2001]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - \Rightarrow transverse expansion (finite Pomeron slope)
- DGLAP for hard cascades
- altogether: 'general Pomeron'

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

For hard processes: 'semihard Pomeron' approach [Drescher, Hladik, SO, Pierog & Werner, 2001]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - \Rightarrow transverse expansion (finite Pomeron slope)
- DGLAP for hard cascades
- altogether: 'general Pomeron'

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

Any model should respect collinear factorization of pQCD

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}}>p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

(4回) (三) (三)

•
$$\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \ \Delta_{\text{eff}} \simeq 0.3$$

Any model should respect collinear factorization of pQCD

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

•
$$\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3$$

• $\Rightarrow dN_{\text{ch}}/d\eta|_{\eta=0} \propto \sigma_{pp}^{\text{jet}}$ explodes at high energies for small Q_0^2

Any model should respect collinear factorization of pQCD

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

•
$$\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3$$

• \Rightarrow $dN_{
m ch}/d\eta|_{\eta=0} \propto \sigma_{pp}^{
m jet}$ explodes at high energies for small Q_0^2

- in QGSJET-II-04, a rather large value (3 GeV^2) is used
- but: pQCD should work down to $Q_0 \sim 1$ GeV?!

Any model should respect collinear factorization of pQCD

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_t^2 \int dx^+ dx^- \frac{d\sigma_{IJ}^{2 \to 2}(x^+ x^- s, p_t^2)}{dp_t^2}$$
$$\times f_{I/p}(x^+, M_{\text{F}}^2) f_{J/p}(x^-, M_{\text{F}}^2)$$
$$\bullet \Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3$$

- $\Rightarrow \left. dN_{
 m ch}/d\eta \right|_{\eta=0} \propto \sigma_{pp}^{
 m jet}$ explodes at high energies for small Q_0^2
 - in QGSJET-II-04, a rather large value (3 GeV^2) is used
 - but: pQCD should work down to $Q_0 \sim 1$ GeV?!

PDFs $f_{I/p}(x, Q^2)$: already constrained by HERA data \Rightarrow no freedom for stronger parton saturation

• what can prevent partons from interacting with each other?!

 what can prevent partons from interacting with each other?!

Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- corrections due to parton rescattering on 'soft' ($x \simeq 0$) gluons [Qiu & Vitev, 2004, 2006]
 - hard scattering involves any number of additional gluon pairs
 - corrections suppressed as $1/(p_{\rm t}^2)^n$

273

 what can prevent partons from interacting with each other?!

Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- corrections due to parton rescattering on 'soft' ($x \simeq 0$) gluons [Qiu & Vitev, 2004, 2006]
 - hard scattering involves any number of additional gluon pairs
 - corrections suppressed as $1/(p_t^2)^n$

QGSJET-III: phenomenological implementation of the mechanism

• with HT effects: dependence on Q_0 -cutoff strongly reduced (currently: $Q_0^2 = 2 \text{ GeV}^2$)

HT effects: impact on cross sections & particle production

- stronger effect at higher energies
- mostly for moderately small pt: the effect fades away with increasing pt (∝ 1/pt²)

HT effects: impact on cross sections & particle production

 $\mathcal{D}\mathcal{A}\mathcal{C}$

+

+ •

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ののの

+

+

• in *pp* scattering, those states undergo different absorption: $|p\rangle = \sum_i \sqrt{C_i} |i\rangle \rightarrow \sum_i \sqrt{C'_i} |i\rangle = \alpha |p\rangle + \beta |p^*\rangle$

• \Rightarrow this generally produces excited proton states $|p^*
angle$

+ •

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_{i} \sqrt{C_i} |i\rangle$

• in *pp* scattering, those states undergo different absorption: $|p\rangle = \sum_{i} \sqrt{C_{i}} |i\rangle \rightarrow \sum_{i} \sqrt{C'_{i}} |i\rangle = \alpha |p\rangle + \beta |p^{*}\rangle$

+

• \Rightarrow this generally produces excited proton states $|p^*
angle$

 the treatment involves interaction eikonals χ^{tot}_{pp(ij)}(s, b, Q₀²) for different combinations of such states, e.g.

$$\sigma_{pp}^{\text{inel}}(s,b) = \sum_{i,j} C_i C_j \int d^2 b \left[1 - e^{-2\chi_{pp(ij)}^{\text{tot}}(s,b)} \right]$$

+ •

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_{i} \sqrt{C_i} |i\rangle$

• in *pp* scattering, those states undergo different absorption: $|p\rangle = \sum_{i} \sqrt{C_{i}} |i\rangle \rightarrow \sum_{i} \sqrt{C'_{i}} |i\rangle = \alpha |p\rangle + \beta |p^{*}\rangle$

+

• \Rightarrow this generally produces excited proton states $|p^*
angle$

• the treatment involves interaction eikonals $\chi_{pp(ij)}^{\text{tot}}(s, b, Q_0^2)$ for different combinations of such states, e.g.

$$\sigma_{pp}^{\text{inel}}(s,b) = \sum_{i,j} C_i C_j \int d^2 b \left[1 - e^{-2\chi_{pp(ij)}^{\text{tot}}(s,b)} \right]$$

• for each state $|i\rangle$: its own size & parton density

'Color fluctuations approach' [Frankfurt et al., 2008]

$$\sum_{I=q,\bar{q},g} \int dx \, x f_{I/p(i)}(x,Q^2) = 1$$

 ⇒ harder gluon PDFs for smaller states

• smaller states, apart from smaller sizes, have smaller opacity

Interaction profiles for different combinations of states

• smaller states, apart from smaller sizes, have smaller opacity

• $\sqrt{s} = 10 \text{ GeV}: \sigma_{pp}^{\text{inel}}(b) < 1$, even at $b \rightarrow 0$

ullet \Rightarrow wide kinematic range for diffraction

Interaction profiles for different combinations of states

• smaller states, apart from smaller sizes, have smaller opacity

• $\sqrt{s} = 10$ GeV: $\sigma_{pp}^{\text{inel}}(b) < 1$, even at $b \rightarrow 0$

 $\bullet \ \Rightarrow$ wide kinematic range for diffraction

• $\sqrt{s} = 10$ TeV: $\sigma_{pp}^{\text{inel}}(b) \simeq 1$, at small b

• \Rightarrow diffraction only possible at large b

Interaction profiles for different combinations of states

• smaller states, apart from smaller sizes, have smaller opacity

•
$$\sqrt{s} = 10$$
 GeV: $\sigma_{pp}^{\text{inel}}(b) < 1$, even at $b \rightarrow 0$

ullet \Rightarrow wide kinematic range for diffraction

•
$$\sqrt{s} = 10$$
 TeV: $\sigma_{pp}^{\text{inel}}(b) \simeq 1$, at small *b*
Of importance to reduce low mass diffraction at high energies
• e.g. $\sigma^{\text{SD}}(M_X < 3.4 \text{ GeV}) = 3.3 \text{ mb in QGS IET-III}$

compared to 2.62 ± 2.17 mb from TOTEM

- forward hadron production in *p*-air & π-air interactions: high importance for EAS simulations
 - dominated by diffractive contributions
 - but: important role of special non-diffractive (ND) interactions: RRP contributions

- forward hadron production in *p*-air & π-air interactions: high importance for EAS simulations
 - dominated by diffractive contributions
 - but: important role of special non-diffractive (ND) interactions: RRP contributions
 - π -exchange process may be dominant (small pion mass)

- forward hadron production in *p*-air & π-air interactions: high importance for EAS simulations
 - dominated by diffractive contributions
 - but: important role of special non-diffractive (ND) interactions: RRP contributions
 - π -exchange process may be dominant (small pion mass)

not described properly by all the models

• cross section for π -exchange (e.g. Kaidalov et al., 2006):

$$\frac{d^2 \sigma(pp \to nX)}{dx_n \, dt} = \frac{-t \, G_{\pi^+ pn}^2}{16\pi^2 (t - m_{\pi}^2)^2} F^2(t) \, \sigma_{\pi p}^{\text{tot}}(M_X^2) \, (1 - x_n)^{1 - 2\alpha_{\pi}(t)}$$
$$\alpha_{\pi}(t) = \alpha_{\pi}'(t - m_{\pi}^2), \, \alpha_{\pi}' \simeq 1 \, \text{GeV}^{-2}; \, F(t) \simeq e^{R_{\pi}^2 t}, \, R_{\pi}^2 \simeq 0.3 \, \text{GeV}^{-2}$$

□ > < E >

• cross section for π -exchange (e.g. Kaidalov et al., 2006):

$$\frac{d^2\sigma(pp\to nX)}{dx_n\,dt} = \frac{-t\,G_{\pi^+pn}^2}{16\pi^2(t-m_{\pi}^2)^2}\,F^2(t)\,\sigma_{\pi p}^{\rm tot}(M_X^2)\,(1-x_n)^{1-2\alpha_{\pi}(t)}$$

$$\alpha_{\pi}(t) = \alpha'_{\pi}(t - m_{\pi}^2), \; \alpha'_{\pi} \simeq 1 \; \text{GeV}^{-2}; \; F(t) \simeq e^{R_{\pi}^2 t}, \; R_{\pi}^2 \simeq 0.3 \; \text{GeV}^{-2}$$

One may approximate $\sigma_{\pi\rho}^{\text{tot}}$ by 1-Pomeron exchange

$$\Rightarrow \sigma_{\pi p}^{\text{tot}}(M_X^2) \propto (M_X^2)^{\alpha_{\mathbb{P}}(0)-1}; M_X^2 = s(1-x_n)$$
$$\frac{d^2 \sigma(pp \to nX)}{dx_n \, dt} \propto \frac{-t \, s^{\alpha_{\mathbb{P}}(0)-1}}{(t-m_{\pi}^2)^2} \, (1-x_n)^{\alpha_{\mathbb{P}}(0)-2\alpha'_{\pi}(t-m_{\pi}^2)} \, e^{2R_{\pi}^2 t}$$

• $x_n \to 1$ suppressed by the $(1 - x_n)$ factor; $x_n \to 0$: by $e^{2R_{\pi}^2 t}$ $(-t = p_{\perp}^2/x_n + (1 - x_n)^2 m_N^2/x_n) \Rightarrow \text{pion 'bump'}$

• cross section for π -exchange (e.g. Kaidalov et al., 2006):

$$\frac{d^2\sigma(pp\to nX)}{dx_n dt} = \frac{-t G_{\pi^+pn}^2}{16\pi^2 (t-m_{\pi}^2)^2} F^2(t) \,\sigma_{\pi p}^{\text{tot}}(M_X^2) \,(1-x_n)^{1-2\alpha_{\pi}(t)}$$

$$\alpha_{\pi}(t) = \alpha'_{\pi}(t - m_{\pi}^2), \; \alpha'_{\pi} \simeq 1 \; \text{GeV}^{-2}; \; F(t) \simeq e^{R_{\pi}^2 t}, \; R_{\pi}^2 \simeq 0.3 \; \text{GeV}^{-2}$$

One may approximate $\sigma_{\pi\rho}^{\text{tot}}$ by 1-Pomeron exchange

•
$$\Rightarrow \sigma_{\pi p}^{\text{tot}}(M_X^2) \propto (M_X^2)^{\alpha_{\mathbb{P}}(0)-1}; M_X^2 = s(1-x_n)$$

$$\frac{d^2 \sigma(pp \to nX)}{dx_n dt} \propto \frac{-t \, s^{\alpha_{\mathbb{P}}(0)-1}}{(t-m_{\pi}^2)^2} \left(1-x_n\right)^{\alpha_{\mathbb{P}}(0)-2\alpha'_{\pi}(t-m_{\pi}^2)} e^{2R_{\pi}^2 t}$$

• $x_n \to 1$ suppressed by the $(1-x_n)$ factor; $x_n \to 0$: by $e^{2R_{\pi}^2 t}$ $(-t = p_{\perp}^2/x_n + (1-x_n)^2 m_N^2/x_n) \Rightarrow$ pion 'bump'

• NB: s^{Δ} ($\Delta = \alpha_{\mathbb{P}}(0) - 1 > 0$) energy rise would violate unitarity

• cross section for π -exchange (e.g. Kaidalov et al., 2006):

$$\frac{d^2\sigma(pp\to nX)}{dx_n dt} = \frac{-t G_{\pi^+pn}^2}{16\pi^2 (t-m_{\pi}^2)^2} F^2(t) \,\sigma_{\pi p}^{\text{tot}}(M_X^2) \,(1-x_n)^{1-2\alpha_{\pi}(t)}$$

$$\alpha_{\pi}(t) = \alpha'_{\pi}(t - m_{\pi}^2), \ \alpha'_{\pi} \simeq 1 \ \text{GeV}^{-2}; \ F(t) \simeq e^{R_{\pi}^2 t}, \ R_{\pi}^2 \simeq 0.3 \ \text{GeV}^{-2}$$

One may approximate $\sigma_{\pi\nu}^{\text{tot}}$ by 1-Pomeron exchange

 $dx_n dt$

•
$$\Rightarrow \sigma_{\pi p}^{\text{tot}}(M_X^2) \propto (M_X^2)^{\alpha_{\mathbb{P}}(0)-1}; M_X^2 = s(1-x_n)$$

$$\frac{d^2 \sigma(pp \to nX)}{dx dt} \propto \frac{-t s^{\alpha_{\mathbb{P}}(0)-1}}{(t-x_n)^{\alpha_{\mathbb{P}}(0)-2\alpha'_{\pi}(t-m_{\pi}^2)}} e^{2R_{\pi}^2 t}$$

 $(t - m_{\pi}^2)^2$

• \Rightarrow one has to account for absorptive effects

 NB: same energy-dependence (s^Δ) for π-exchange as for single (cut) Pomeron (1P) exchange

 NB: same energy-dependence (s^Δ) for π-exchange as for single (cut) Pomeron (1P) exchange

- eikonal rapidity gap suppression factor (to exclude additional inelastic rescatterings)
- enhanced diagrams (to exclude inelastic rescattering of intermediate partons in the Pomeron)

 NB: same energy-dependence (s^Δ) for π-exchange as for single (cut) Pomeron (1P) exchange

- eikonal rapidity gap suppression factor (to exclude additional inelastic rescatterings)
- enhanced diagrams (to exclude inelastic rescattering of intermediate partons in the Pomeron)
- \Rightarrow treat π -exchange as a part (probability w_{π}) of 1P-exchange

Comparison to LHCf data at $\sqrt{s} = 13$ TeV ($w_{\pi} = 0.3$)

- forward neutron production: dominated by ND (no π -exch.)
- π -exchange: important in the highest η bins
- comparable contribution from inelastic diffraction

Comparison to LHCf data at $\sqrt{s} = 13$ TeV ($w_{\pi} = 0.3$)

• π -exchange: important in the highest η bins

comparable contribution from inelastic diffraction

Comparison to LHCf data at $\sqrt{s} = 13$ TeV ($w_{\pi} = 0.3$)

Comparison to LHCf data at $\sqrt{s} = 13$ TeV ($w_{\pi} = 0.3$)

Comparison to LHCf data at $\sqrt{s} = 13$ TeV ($w_{\pi} = 0.3$)

