

Recent ALICE results on antinuclei inelastic c.s. and the implications for antinuclei fluxes near Earth

I.Vorobyev¹ On behalf of ALICE collaboration 1. Technische Universität München

09.06.2021

Motivation

Antinuclei in cosmic rays (d, 3He, 4He) - unique probe for indirect dark matter searches

- Low background from secondary production is expected in the low-energy range
- Vital to determine primary and secondary antinuclei fluxes as precisely as possible!

Motivation

Antinuclei in cosmic rays (d, ³He, ⁴He) - unique probe for indirect dark matter searches

- Low background from secondary production is expected in the low-energy range
- Vital to determine primary and secondary antinuclei fluxes as precisely as possible!

Many effects on the long way to the detectors near Earth: • Diffusion, convection: common for all (anti)particles • Inelastic interactions with interstellar medium - essential part of calculations!

Status of antinuclei σ_{inel} measurements (before ALICE)

Antinuclei inelastic cross sections are poorly (or not) known at low energies

- Antideuterons: no experimental data below p = 13.3 GeV/c [2]
- Antiheluim inelastic c.s. have never been measured at any momenta

Lee et al., Phys. Rev. C 89, 054601 (2014) [1] Denisov et al., Nuclear Physics B 31 (1971) 253 [2]

Status of antinuclei σ_{inel} measurements (before ALICE)

Antinuclei inelastic cross sections are poorly (or not) known at low energies

- Antideuterons: no experimental data below p = 13.3 GeV/c [2]
- Antiheluim inelastic c.s. have never been measured at any momenta

High-energy collisions at LHC produce a lot of antinuclei

• We can use this to study antinuclei inelastic interaction with the detector material!

Lee et al., Phys. Rev. C 89, 054601 (2014) [1]

Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021 Denisov et al., Nuclear Physics B 31 (1971) 253 [2]

LHC as an antimatter factory At LHC energies, (anti)nuclei are abundantly produced in collisions of protons and Pb ions

LHC as an antimatter factory

At LHC energies, (anti)nuclei are abundantly produced in collisions of protons and Pb ions

- Perfect place to study the production and annihilation of antinuclei at low momenta
- Primordial antimatter-to-matter ratio approaches unity with increasing \sqrt{s}

[1] ALICE, Phys. Rev. C 97, 024615 (2018)

...and ALICE detector material as a target

Many different materials are used in the detector construction • Averaged $\langle A \rangle$ value of material crossed by an (anti)particle can be calculated as: $\langle A \rangle = \frac{\sum_{i=1}^{R} A_i \rho_i}{\sum_{i=1}^{R} \rho_i}$

ALICE material budget at mid-rapidity [1]

Methods used to obtain σ_{inel} of antinuclei

Antimatter-to-matter ratio [1]

- Measure reconstructed "antinuclei/nuclei" and compare results with MC simulations
- Used for analyses of $\sigma_{inel}(\overline{d})$ and $\sigma_{inel}({}^{3}\overline{He})$

[1] ALICE, Phys. Rev. Lett. 125, 162001 (2020)

Methods used to obtain σ_{inel} of antinuclei

Antimatter-to-matter ratio [1]

- Measure reconstructed "antinuclei/nuclei" and compare results with MC simulations
- Used for analyses of $\sigma_{inel}(\overline{d})$ and $\sigma_{inel}({}^{3}\overline{He})$

[1] ALICE, Phys. Rev. Lett. 125, 162001 (2020)

Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021

TPC-to-TOF matching

- Measure "antinuclei in TOF/antinuclei in TPC" and compare results with MC simulations
- Applicable for ³He in a broad momentum range

Particle identification in TPC and TOF

Complementary information from TPC and TOF detectors allows selection of high-purity (anti)nuclei

TPC: dE/dx in gas (Ar/CO₂)

 Clear identification of (anti)³He thanks to large mass and double charge

Particle identification in TPC and TOF

Complementary information from TPC and TOF detectors allows selection of high-purity (anti)nuclei

TPC: d*E*/dx in gas (Ar/CO₂)

 Clear identification of (anti)³He thanks to large mass and double charge

TOF measurements: $\beta = v/c$

• $p = \gamma \beta m \rightarrow mass$

d*E*/dx in ALICE TPC

ALI-PERF-149520

Raw ratio of primary (anti)deuterons

Raw d / d ratio compared to ALICE Geant4 MC simulations

 Higher loss of antideuterons in detector material as expected

Monte Carlo data: detailed simulation of ALICE detector performance

- Propagation of (anti)particles and interaction with matter with Geant4
- Inelastic c.s.: Glauber model simulations parametrised vs A as described in [2]

Raw ratio of primary (anti)deuterons

Raw d / d ratio compared to ALICE Geant4 MC simulations

 Higher loss of antideuterons in detector material as expected

Monte Carlo data: detailed simulation of ALICE detector performance

- Propagation of (anti)particles and interaction with matter with Geant4
- Inelastic c.s.: Glauber model simulations parametrised vs A as described in [2]

Vary $\sigma_{inel}(\overline{d})$ in simulations until MC describes the experimental results \rightarrow constraints on $\sigma_{inel}(\overline{d})$

• $\sigma_{inel}(d)$ is fixed to the Geant4 parameterisations (describe well exp. data on $\sigma_{inel}(d)$)

Extraction of $\sigma_{inel}(\overline{d})$

In each momentum bin, exp. data are compared to MC simulations with varied $\sigma_{inel}(\overline{d})$

Results for $\sigma_{inel}(d)$

High *p* region (TOF analysis): good agreement with Geant4 parameterisations

First experimental information on $\sigma_{inel}(\overline{d})$ at low momentum! $\sigma_{inel}(\overline{d})$ on averaged ALICE material [1] ALICE (d) $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ $\langle Z \rangle = 14.8, \langle A \rangle = 31.8, \text{ ml} < 0.8$ ---- $\sigma_{inel}(\overline{d} + \langle A \rangle)$ Geant4 ------ $\sigma_{inel}(d + \langle A \rangle)$ Geant4 ----- Data_(ITS+TPC+TOF) 3 $\sigma_{\text{inel}}(\overline{d} + \langle A \rangle) \pm 1\sigma$ $\sigma_{\text{inel}}(\overline{d} + \langle A \rangle) \pm 2\sigma$ 2 0 2 3 0

Results for $\sigma_{inel}(d)$

High *p* region (TOF analysis): good agreement with Geant4 parameterisations Low p region (ITS-TPC analysis): hint for steeper rise of $\sigma_{inel}(\overline{d})$ than in Geant4!

1.2 Raw (<u>d</u> / d) ALICE p–Pb $\sqrt{s_{NN}}$ = 5.02 TeV 8.0 Q Ø 0.6 Data MC Geant4 ITS+TPC analysis O **ITS+TPC+TOF** analysis 0.4 ± 3.0% global unc. not shown Data / MC 1.2 0.8 2 3 0 p_{primary} (GeV/c) [1] ALICE, Phys. Rev. Lett. 125, 162001 (2020)

Raw d / d ratio [1]

First experimental information on $\sigma_{inel}(\overline{d})$ at low momentum!

Results for σ_{inel} (³He)

- Low-momentum range: much steeper rise of $\sigma_{inel}({}^{3}\overline{He})$ than predicted by Geant4
- First experimental information on $\sigma_{inel}({}^{3}\overline{He})!$

Raw ³He / ³He ratio in pp collisions

ALI-PREL-347219

Antimatter-to-matter ratio method (used in pp collisions) or TPC-to-TOF matching (for PbPb collisions)

11

Results for σ_{inel} (³He)

- Low-momentum range: much steeper rise of $\sigma_{inel}({}^{3}\overline{He})$ than predicted by Geant4
- First experimental information on $\sigma_{inel}({}^{3}\overline{He})!$

Raw ³He / ³He ratio in pp collisions

ALI-PREL-347219

What is the impact of these measurements on the antinuclei fluxes near Earth?

Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021

• Antimatter-to-matter ratio method (used in pp collisions) or TPC-to-TOF matching (for PbPb collisions)

11

Recipe to cook antinuclei fluxes $\chi + \overline{\chi} \rightleftharpoons f + \overline{f}, W^+ + W^-, \dots \rightleftharpoons \overline{p}, \overline{d}, \overline{He}, \gamma \dots$ **Dark matter** annihilation and decays $p + p, p + He, He + He \rightleftharpoons \overline{p}, \overline{d}, \overline{He}, \gamma \dots$ Secondary antinuclei from collisions of CR with ISM

Propagation of ³He in the Galaxy

Transport equation to be solved:

Can be numerically solved using **GALPROP** code [1]

Propagation parameters (common for all (anti)nuclei) can be constrained from available cosmic ray measurements

[1] <u>https://galprop.stanford.edu</u>

Boschini et al., Astrophys. J. Suppl. 250 (2020) 2, 27 [2]

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Propagation: diffusion, convection...

Fragmentation, inel. interactions

Propagation of ³He in the Galaxy

Transport equation to be solved:

Can be numerically solved using GALPROP code [1]

Propagation parameters (common for all (anti)nuclei) can be constrained from available cosmic ray measurements .

The calculation of ³He flux requires:

• source function: differential production cross section [3, 4]

inelastic cross section (from ALICE measurements)

[1] <u>https://galprop.stanford.edu</u>

- [2] Boschini et al., Astrophys. J. Suppl. 250 (2020) 2, 27
- [3] Shukla et al., Phys. Rev. D. 102, 063004 (2020)
- [4] Carlson et al., Phys. Rev. D. 89, 076005 (2014)

Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Propagation: diffusion, convection...

Fragmentation, inel. interactions

³He source function: dark matter

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle \frac{dN}{dE_{kin}}$$

- ρ_{DM} according to NFW profile [1]
- m_{χ} = 100 GeV, annihilation into W+W-
- $\langle \sigma v \rangle$ = 2.6x10⁻²⁶ cm³s⁻¹ [2]
- dN/dE_{kin} from [1] (PYTHIA 8 with event-byevent coalescence afterburner)

[1] Carlson et al., Phys. Rev. D. 89, 076005 (2014)

³He source function: dark matter

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle \frac{dN}{dE_{kin}} \overset{\text{or}}{\underset{0}{\stackrel{10^3}{\stackrel{10^3}{\stackrel{10^2}{\stackrel{10^3}}\stackrel{10^3}{\stackrel{10^3}{\stackrel{10^3}}\stackrel{10^3}{\stackrel{10^3}\stackrel{10^3}{\stackrel{10^3}\stackrel{10^3}{\stackrel{10^3}}\stackrel{10^3$$

- ρ_{DM} according to NFW profile [1]
- m_{χ} = 100 GeV, annihilation into W+W-
- $\langle \sigma v \rangle$ = 2.6x10⁻²⁶ cm³s⁻¹ [2]
- dN/dE_{kin} from [1] (PYTHIA 8 with event-byevent coalescence afterburner)

[1] Carlson et al., Phys. Rev. D. 89, 076005 (2014)

A Large Ion Collider Experiment

³He source function: dark matter

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle \frac{dN}{dE_{kin}} \bigvee_{0}^{\infty} \frac{dV}{dE_{kin}} \bigvee_{0}^{\infty} \frac{dV$$

- ρ_{DM} according to NFW profile [1]
- $m_{\chi}^{\rho} P M 00$ GeV, annihilation into W+W-• $\langle m_{\chi} \rangle = 2.6 \times 10^{-26} \text{ cm}^3 \text{s}^4 W_{[2]}^+ \text{b}^5$ bb
- $dN \phi dR_{kin}$ from [1] (PYCTHIA 8 with event-byevent coalescence afterburner) dN/dE_{lim} κιπ

[1] Carlson et al., Phys. Rev. D. 89, 076005 (2014)

[2] Korsmeier et al., Phys. Rev. D. 97, 103011 (2018) Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021

³He source function: cosmic rays + ISM

Relevant collision systems: pp, p-He, He-p, He-He

³He source function: cosmic rays + ISM

Relevant collision systems: pp, p–He, He–p, He–He

- Other collision types scaled by $(A_T A_P)^{2.2/3}$

• Production cross section in pp collisions: from [1] (EPOS LHC + even-by-event coalescence afterburner)

³He production in pp [1]

³He source function: cosmic rays + ISM

Relevant collision systems: pp, p–He, He–p, He–He

- Other collision types scaled by $(A_T A_P)^{2.2/3}$
- Validated with the ALICE data [2]

• Production cross section in pp collisions: from [1] (EPOS LHC + even-by-event coalescence afterburner)

Inelastic interactions

ALICE measurements on $\sigma_{inel}({}^{3}\overline{He})$ are for heavy elements with $\langle A \rangle = 17.4$ to 34.7 Need to be scaled for proton and helium targets (ISM)

Inelastic interactions

- $\sigma_{inel}(^{3}He)$ on averaged ALICE material $\sigma_{inel}(^{3}He)$ on proton 1500 Parameterization $\sigma_{inel}^{p^{3}\overline{\text{He}}}$ ALICE on < A > = 17.4ALICE Geant4 1250 corr. =ALICE on $\langle A \rangle = 31.8$ σ^{Geant4} Geant4 default $\sigma_{inel}^{p^{3}He}$ Geant4 qu 1000 5 x ALICE on < A > = 34.7Geant4 x 5 ALICE $\sigma_{inel}^{p^{3}He}$ / ALICE on $\langle A \rangle = 17.4$ 95% confidence upper limit 750 p³He inel **ALICE** Preliminary **ALICE Preliminary** 500 PbPb data 250 100 10^{-1} 10¹ 3 2 8 0 10 5 6 Kinetic energy per nucleon (GeV/n) p (GeV/c)**ALI-PREL-486199**
- ALICE measurements on $\sigma_{inel}({}^{3}\overline{He})$ are for heavy elements with $\langle A \rangle = 17.4$ to 34.7 Need to be scaled for proton and helium targets (ISM) • Obtain correction factor for Geant4 parametrisation using ALICE measurements • Use this correction factor for all targets, with additional 8% uncertainty on possible A scaling [1]

Uzhinsky et al., Phys. Lett. B 705 (2011) 235 [1]

Solar environment effects

- Solar magnetic field forms heliosphere which shields cosmic rays

Distance to the galactic centre (a

• Solar modulation is accounted for using Force-Field approximation [1] with Fisk potential $\varphi = 0.4$ GV:

Solar environment effects

- Solar magnetic field forms heliosphere which shields cosmic rays

$$F_{mod}(E_{mod},\phi) = F(E) \frac{(E - Z\phi)^2 - m_{^{3}He}^2}{E^2 - m_{^{3}He}^2} \text{, where } E_{mod} = E - Z\phi$$

$$p + p \rightarrow {}^{3}\overline{\text{He}} + p \rightarrow Y$$

$$p + {}^{4}\text{He} \rightarrow {}^{3}\overline{\text{He}} + X$$

$$\chi + \chi \rightarrow b\bar{b} \rightarrow {}^{3}\overline{\text{He}} + X$$
Distance to the galactic centre (a.u.)
Local interstellar flux

: (outside heliosphere) [1] Gleeson, Axford, Astrophys.J. 154 (1968) 1011

Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021

• Solar modulation is accounted for using Force-Field approximation [1] with Fisk potential φ = 0.4 GV:

17

Results: ³He fluxes

Various $\sigma_{inel}(^{3}He)$ used in the calculations

- $\sigma_{\text{inel}}(^{3}\overline{\text{He}}) = 0$
- $\sigma_{inel}(^{3}He)$ from Geant4
- $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ from [1]
- $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ from ALICE

Uncertainties are only from ALICE measurement on σ_{inel} • Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25-90% for background

• High transparency of the Galaxy to ³He nuclei!

ALI-PREL-486164

[1] Korsmeier et al., Phys.Rev.D 97 (2018) 10, 103011 Antinuclei inelastic c.s. in ALICE and implications for DM searches | ISCRA-2021 | 08.06.2021

Summary and outlook

First measurements of antinuclei inelastic cross section in low kinetic energy range

Impact of the ALICE measurements on ³He fluxes near Earth has been studied:

- High transparency of the Galaxy to ³He
- Uncertainties on cosmic ray fluxes from $\sigma_{inel}(^{3}He)$ measurements are small compared to other uncertainties in the field

The analysis of the impact on antideuteron cosmic ray fluxes is ongoing

Summary and outlook

First measurements of antinuclei inelastic cross section in low kinetic energy range

Impact of the ALICE measurements on ³He fluxes near Earth has been studied:

- High transparency of the Galaxy to ³He
- Uncertainties on cosmic ray fluxes from $\sigma_{inel}(^{3}He)$ measurements are small compared to other uncertainties in the field

The analysis of the impact on antideuteron cosmic ray fluxes is ongoing

