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Environmental neutron sources.
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History
«* Neutrons in EAS

First measurements were in 1948-49 by Cocconi & Cocconi-Tongiorgi:.
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I, CONCLUSIONS

Uhe results obtained tn the described experiments
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K.Greisen. Cosmic Ray Showers. Annu. Rev. Nucl. Sci.
1960.10:63-108:

“The nuclear cascade which is the of a shower is dominated by

a very few high-energy particles, sometimes only OoNne, in the core of the
shower...... ,-and showers of a given size are encountered at a single altitude
In all stages of development.”

“Since the interactions of the few nuclear active particles carrying most of the energy
are governed by chance, both in location and in distribution of energy among the
secondary particles, it is only natural that large fluctuations in the energy balance
should occur from one shower to another, particularly among the smaller showers, in
which there is often only a single particle of very high energy in the core.”

“Slow neutrons, from thermal energies up to one Mev, must be very abundant
In the showers, but have not yet been measured.”

1. The number of high energy hadrons Nh
IS small — this results in high fluctuations;

2. Evaporation neutrons must be measured and
could serve as an energy estimator.



Later it was forgotten for ~30 years...

New interest appeared when in 90-s FIAN group claimed about
anomalies in EAS neutron distributions as measured by Tien Shan
NM.

The latter stimulated us to repeat their measurements.

As a result, we found-that all “anomalies” can by explained by
methodical reasons. On the other hand, the phenomenon which
we called as "Neutron bursts” does exist.

Then we proposed to use EAS thermal neutrons as-a
calorimetric parameter and energy estimator.

Later we developed electron-neutron detector (en-detector) and
have proposed Multi-component EAS array and later the PRISMA
(PRImary Spectrum Measurement Array) — a novel type of EAS
arrays measuring hadronic component over full array area.



ELSEVIER Astroparticle Physics 16 (2001) 157-168

1999- experiment in Mexico using NM
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. Our experiment has confirmed the existence
of neutron bursts. 1.e. events in the neutron monitor
with very high multiplicity of recorded neutrons
both mn the boron counters and in the outer
scintillator detectors.

2. Neutron gas counters do not work properly
at high counting rate during the burst events. To
measure correct time distribution, fast neutron
detectors must be used. At present, the full oscil-
loscope screen control allows us to estimate the
actual number of neutrons in the registered bursts.

3. We observed several interesting effects in
neutron bursts that known neutron physics pro-
cesses can explain satistactorily. In particular, the
apparent “delayed component” of the showers
may well be explained by the albedo neutrons from
the ground and surrounding media.
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Figure 2. The PRISMA lay-out (top and side view).
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First EN-Detector of thermal neutrons and electrons:

PMT

0w

70 cwm

Scintillator compound
SLiF+ZnS(AQ)
30 mg/cm?

Enriched with 6Li up to 90%

Nuclear reaction in use:

°Li +n=3H + a + 4.78 Mev.

Resulting ~ particles ~ produce in  ZnS(AQ),
scintillations which are recorded by PMT “FEU-
2007, of 6”7 diameter.

Detector counting rate .~0.5/ sec at surface

Pulse shape selection in en-detectors

Charged particles

Relativistic charged particles give ~50 KaB s

This is below our threshold (~3 mip).

|

en-detector IS not sensitive to
beta and gamma background



Modern en-detector
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PRISMA prototypes
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Figure 3. Recorded neutron time distribution for
all events selected by M1 trigger.

(Prisma-32 in MEPhI, sea level)

(D.M. Gromushkin, V.V. Alekseenko, A.A. Petrukhin, et al. The ProtoPRISMA array for EAS study: first results.
Journal of Physics:ConferenceSeries 409 (2013) 012044)
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O. B. Shchegoley, et al. Primary Cosmic Ray Energy Spectrum Above the “Knee”
Measured with PRISMA-32 Array. Physics of Atomic Nuclei, 2020, Vol. 83, No. 2, pp. 290-293.
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Fig. 2. Primary energy spectrum recalculated with linear fit shown in Fig. | from neutron multiplicity spectrum measured by
the PRISMA-32 array (circles). For comparison energy spectra obtained by some other experiments are shown [2, 3, 12].



PRISMA4-YBJ prototype (Tibet, 4300 m a.s.l.)

Astroparticle Physics 81 (2016) 49-60

Contents lists available at ScienceDirect

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropartphys

Detection of thermal neutrons with the PRISMA-YBJ array in extensive
air showers selected by the ARGO-YB] experiment

En-detectors on cluster
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. 5.13m
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Fig. 5. Upper plot: photo of PRISMA-YB] above the ARGO-YBJ RPC carpet. Lower
left: layout of PRISMA-YBJ. Lower right: PRISMA-YBJ on the ARGO-YBJ cluster 78.

Cross-calibration has been made
with ARGO-YBJ detectors
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Fig. 11. Correlation between the electron densities measured by the four EN-
detectors of PRISMA-YB] via the fast signals (ppg) and those measured by the cor
responding RPCs of ARGO-YB] (pag): D1 (black solid line), D2 (red dashed line), D3
(green dotted line) and D4 (blue dot-dashed line). (For interpretation of the refer
ences to color in this figure legend, the reader is referred to the web version of this
article.)



Preliminary results were obtained

PrisvAY ] Primary spectrum recovered

) from neutron EAS size.
%10 Stenkin Yu. et al.
e P eemaggiii] } POS(ICRC2017)488
i 1 ‘ ' B 1(IJO
Rk Stenkin Yu. et al.

Figure 4: Primary spectrum recovered from EAS size spectrum in thermal neutrons. P O S ( I C R C 2 O 1 7 ) 4 8 5

10° 4 Lg(N,)>6.5
A novel method for CR mass
_ composition measurements
; has been developed and
Implemented.
- Result of P4-YBJ:

; ST light composition up to
~100 PeV.

Figure 1: Simulated function F(>R, 4) for different primary particles at an altitude of 4300 m in
comparison with observation.
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ENDA-LHAASO:
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Recently HAWC published a paper confirming our

measurements of neutrons in EAS:

Gregory S. Bowers, et al. Fair Weather Neutron Bursts From Photonuclear
Reactions by Extensive Air Shower Core Interactions in the Ground and
Implications for Terrestrial Gamma-ray Flash Signatures.//Geophysical Research
Letter. (2021), Doi: 0.1029/2020GL090033

The only difference is that they recorded not neutrons but secondary delayed gammas
produced by neutron captures in surrounding matter.

C
LaBr, PMT & A, RF Waveforms 100 ‘LI S N L B N N B N N B B B g
LN N e By B s B B B N B B - .
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0 (T | ‘ | ] g ~ 4
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8000 L1 1 AT SR N (NN TN S TN MY (NN NN TN N NN SO Y N 1 0 E— 15(1)01 — “|0100 * ;5100\1 ' 12000
-2 0 2 4 6 8 10
Offset from Trigger [ms] Time [us]

Their conclusion:

“This means that the signature of neutron bursts should be expected from any large cosmic ray
shower that has a sufficiently large electromagnetic component, even “coreless” showers (Stenkin,
2003) at lower altitudes.”

IS not correct! The most part of neutrons is produced by hadron.interactions




<s*Environmental neutron variations

Environmental thermal neutron fluxes are in equilibrium with
the media and the media changes can affect the neutron flux in it.

Moreover, neutrons originated from natural radioactivity are
connected with radon concentration in soil-and surrounding matter.
This allows one “to look™ underground up to several meters and to
noninvasively monitor radon concentration there.

Measuring environmental neutron flux variations makes it possible
to study various geophysical phenomena.



First measurements of environmental neutron background were made in
the middle on 20" century (see for example C.J. Hatton. /The neutron
monitor. // Progress in Elementary Particle and Cosmic Rays Physics, vol. X,
North-Holland, Amsterdam, (1971), p. 3-100 and references there).

Some early results can be found in:

Gorshkov, G. V., et al.:. Natural neutron background of the atmosphere
and the Earth’s crust, M., Atomizdat, 1966.

B.M.Kuzhevskij's group from MSU published a lot of papers on the subject
(for example B.M. Kyxxeeckuii. HentpoHHoe norne 3eMnu. eoghusuyeckue
npoueccol u buocepa. 2005. T. 4, Ne 1/2. C. 18-26).

1 Os;BKCHepPINIeHTa.'IBHBIe JAaHHEIE ¢ KaMYaTCKOH YCTAHOBKH,

Very strange behavior of neutron
. background which could not be
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explained by physical reasons.
The most probable explanation is
an e-m noise.
Detector’s pulse shape was not
analyzed.
Unfortunately‘such-abnormal
INncreases are seen-in other their
papers-as.well.

But, these works stimulated us to repeat them



For comparison: how our en-detector works for a long period of 5 years

- n-PST (deep underground: depth=850 hg/cmz)
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Only seasonal wave with- amplitude of ~20% is seen in neutrons deep underground



Unfortunately, many “anomalies” were also published in other works dealing
with environmental neutron measurements:

“High increase” of neutrons during thunderstorms

“Increase” of neutrons during Sun eclipses

“Increase” of neutrons during earthquakes

Abnormal tidal waves in neutrons

The problem is that people did not-analyze pulse shape in these works.
As a result instead of neutrons bursts they highly likely recorded “busts of
pulses” produced by e-m noise. The latter especially possible during
thunderstorms.

For example, Armenian group first-also published “increase of neutron flux
during.thunderstorms but later, after starting of pulse digitizing and applying of

Pulse Shape Selection they claimed that before it was e-m noise, not particles.

(Chilingarian A. DO RELATIVISTIC ELEMENTARY PARTICLES ORIGINATE IN THE LIGHTNING
DISCHARGES? //Bulletin of the Russian Academy of Sciences: Physics. 2017. T. 81. Ne 2, C. 238-240.).



Geophysical researches with thermal neutrons

« Seasonal variations

« Moon tidal waves

* Neutrons In thunderstorms

* ‘Forbush effect and environmental neutrons
« Barometric pumping effect for neutrons

» Earth free oscillations in neutrons

« Earthquakes

e Strong magnetic storms

23



Slide shown by

\ictor Alekseenko| at WASDHA-2018

Moon Earth and Sun as the actors in the Nature _~"~\_ play

A,B,C,D, E := ties between actors and phenomena

Earth

“\_Full Moon
. New Moon

TNF-thermal neutron flux

Phenomena :

TE - gravitational Tidal Effect FEO -Free Earth Oscillations EQ-earthquake

MS - magnetic storms

Yu. Steikin, ISCRA=2021
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Forbush decreases
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V. Alekseenko, F Arneodo, et al. Registration of Forbush decrease 2012/03/08 with a global net of the
thermal neutron scintillation en-detectors. Journal of Physics:Conference Series 409 (2013) 012190



week ending

PRL 114, 125003 (2015) PHYSICAL REVIEW LETTERS 27 MARCH 2015

Decrease of Atmospheric Neutron Counts Observed during Thunderstorms
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FIG. 3. Noise pulse shape produced by lightning.
corrected data.

Summary: no any neutron excess during thunderstorms but instead sometimes we see decrease of neutron flux
(after a dry period)
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Barometric pumping effect in underground neutrons

Thermal neutrons underground, 25 m of w. e. (MSU basement)
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Delayed correlation
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This effect should be taken into account in underground experiments ( DM or 2, etc)

Some additional results will be shown later in Xinhua Ma presentation (next Session)



Summary |

Thermal neutron fluxes study makes it possible to study EAS hadronic
component and geophysical processes as well

EAS neutrons recording was proposed by Greisen many years ago but only
at now days it is realised

Continuous monitoring of environmental neutron background with a precise
accuracy Is now carrying out using our global net of en-detectors

The ENDA-LHAASO project will include geophysical researches
Special attention will be paid to Solar-Moon-Earth connections phenomena

(space weather) and to correlations between Eqgs, FEO and environmental
thermal neutrons
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Thank you!




