Large scale modulation view from the earth points

Belov A.V., Gushchina R.T., Oleneva V.A., Yanke V.G.

Pushk, Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) 3rd ISCRA, Moscow, 2021

Содержание

1. Введение

2. Изотропное приближение

- 3. Связь вариаций КЛ с СА
- 4. Запаздывание, гистерезис

5. Индексы и набор параметров моделирования

6. Многопараметрическая модель вариаций КЛ

7. Жесткостной спектр вариаций КЛ

8. Анизотропное приближение
9. перGSM и экваториальная компонента вой гармоники анизотропии
10. GSM и северо-южная составляющая анизотропии

11. КА и наземная сеть

 Структура гелиосферы по данным Ulysses
 КЛ на поверхности Марса и Земли
 Сравнение РАМЕLA, AMS-02

и GSM

15. Экспериментальный спектр вариаций

Ближайшие задачи

Абстракт

Дан обзор современных результатов, полученных в результате наземных наблюдений при исследовании солнечной модуляции космических лучей. Обсуждаются следующие темы:

наблюдения модуляции космических лучей на Земле и основные характеристики накопленных экспериментальных данных; проявления солнечного магнитного цикла в космических лучах; эффект гистерезиса и его связь с размерами гелиосферы; спектр жесткости долговременных вариаций космических лучей и его сравнение с прямыми измерениями на космических аппаратах; долговременные вариации анизотропии космических лучей и градиенты; калибровка данных наземного мониторинга по данным прямых измерений на космических аппаратах в сравнимых диапазонах энергий; место наземных наблюдений в современных исследованиях модуляции космических лучей и их перспективы на будущее.

Особое внимание уделяется соотношению долговременных вариаций космических лучей с различными солнечно-гелиосферными параметрами, а также к эмпирическим моделям модуляции космических лучей.

Долговременная модуляция космических лучей: взгляд с орбиты Земли

Белов А.В., Гущина Р.Т., Оленева В.А., Янке В.Г.

Инстит

земного магн гизма, ионосферы и распространения радиоволн им. Н.В.Пушкова (ИЗМИРАН) 3rd ISCRA, Москва, 2021

Содержание

1. Введение

2. Изотропное приближение

- 3. Связь вариаций КЛ с СА
- 4. Запаздывание, гистерезис
- 5. Индексы и набор параметров моделирования
- 6. Многопараметрическая
- модель вариаций КЛ
- **7**. Жесткостной спектр вариаций КЛ

8. Анизотропное приближение
9. GSM и экваториальная компонента первой гармоники анизотропии
10. GSM и северо-южная составляющая анизотропии

11. КА и наземная сеть

12. Структура гелиосферы по данным Ulysses
13. КЛ на поверхности Марса и Земли

14. Сравнение PAMELA, AMS-02 и GSM

15. Экспериментальный спектр вариаций

Ближайшие задачи

2. Космические лучи вчера и сегодня

Мировая сеть станций космических лучей

Космические лучи сегодня. Верхняя панель: ионизационная камера и нейтронный монитор Climax [Mewaldt, 2013]; Нижняя панель: Долговременные наблюдения вариаций космических лучей на примере нейтронных мониторов Climax и Москва, относительно базового периода 1987 года.

2. Космические лучи вчера и сегодня

$$v = a_1 (R_L + R)^{-\gamma}$$

$$v = a_{10} \frac{(R_L + 10)^{\gamma}}{(R_L + R)^{\gamma}}$$

Долговременные изменения плотности космических лучей с жесткостью 5, 10, 20 ГВ, полученные методом GSM по данным сети наземных детекторов [Белов и др., 2019].

Верхняя панель: вариации космических лучей для некоторых станций (эффективная энергия ~10 ГВ); нижняя часть: временные изменения радиоизлучения с длиной волны 10.4 см и числа Вольфа

3. Связь долгопериодных вариаций космических лучей с солнечной активностью. 1 параметр.

Верхняя панель: долговременные наблюдения вариаций космических лучей на примере нейтронных мониторов Climax и Москва; нижняя панель: временные изменения радиоизлучения с длиной волны 10.7 см и числа Вольфа.

Существует цепочка: солнце поверхность источника - гелиосфера (солнечный ветер) - космические лучи. Еще на раннем этапе была выявлена обратная зависимость интенсивности галактических КЛ от циклом СА [Глокова, 1952; Forbush, 1954].

Многие исследователи (Stozhkov and Charachchyan, 1970; Moraal, 1976; Dorman and Gushchina, 1977) получали вполне удовлетворительные результаты, связывая поведение космических лучей с различными солнечными индексами. В

период между переполюсовками корреляция достигала **0.98** и при A>0 коэффициенты регрессии значительно меньшие, чем при A<0.

Казалось бы, задача решена.

Невозможно объяснить суть этой связи.

Числа Вольфа, например, не должны иметь прямой связи с вариациями КЛ, **должен быть физический посредник,** воздействующий непосредственно на космические лучи. Сегодня ясно, что ключом ко всем активным явлениям, происходящим на Солнце, в солнечной атмосфере и гелиосфере являются магнитные поля.

5. Долговременные изменения солнечно-гелиосферных индексов и оптимальный набор параметров моделирования

Линейная модель и управляющие параметры X: $v(t) = a_0 + a_1X_1 + a_2X_2 + a_3X_3 + a_4X_4 + a_5X_5$

Выбор и анализ солнечно-гелиосферных характеристик выполнялся в работах [Belov et al., 2002] и [Gushchina et.al., 2008, 2012, 2013]. При построении современных моделей вариаций привлекались солнечногелиосферные индексы.

Поведение:

а) вариаций плотности КЛ с жёсткостью 10 ГВ;

b) наклона гелиосферного токового слоя (HCS);

с) <u>площади</u> низкоширотных корональных дыр (A_L) [Гущина и др., 2016];

d) индекса СМЕ [Белов и др., 2018];

 е) <u>магнитной</u> индукции среднего магнитного поля Солнца (B_{ss}) [Obridko et al., 1999] и магнитной индукции межпланетного магнитного поля у Земли (B_{IMF});
 f) и <u>магнитной</u> индукции полярного магнитное поля Солнца (B_{pol}).

Ближайшие задачи. Разработать и создать базу данных солнечных и межпланетных параметров с максимальной возможностью ее автоматического обновления.

5. Многопараметрическая модель долгопериодных вариаций КЛ

Сравнение наблюдаемых и модельных вариаций КЛ для модели, учитывающей наклон токового слоя η_{HCS} и индукции В_{IMF} [Belov, 2000] Поскольку космические лучи в зависимости от энергий определенное время странствуют в пределах гелиосферы, наблюдаемые вариации КЛ интегральны по своей природе и естественно следует ожидать, что в них объединено влияние многих факторов (и не только тех, которые уже обсуждались). Поэтому реалистичная модель долгопериодных вариаций КЛ должна объединять, по меньшей мере, несколько солнечногелиосферных индексов. На каком-то этапе пришло понимание, что среди этих индексов должен быть и модуль межпланетного магнитного поля В_{IMF}, и наклон гелиосферного токового слоя HCS.

$\sigma = 0.27\%$, $\rho = 0.98$

При времени запаздывания и равных весах, средние значения солнечного или гелиосферного индекса S согласно равно Σ^{r_s} с(с – –)

$$\overline{S}(t,\tau_S) = \frac{\sum_{\tau=0}^{t_S} S(t-\tau)}{\tau_S + 1}$$

и тогда для модели вариаций можно записать

$$v(t) = a_0 + a_{\eta_{HCS}} \overline{\eta_{HCS}}(t, \tau_{\eta_{HCS}}) + a_{B_{IMF}} \overline{B}_{IMF}(t, \tau_{IMF})$$

Двухпараметрическая модель дает хорошие результаты во все периоды низкой и умеренной солнечной активности и во все **периоды с одинаковой полярностью**. При высокой активности корреляция хуже, но и здесь использование двух, дополняющих друг друга, индексов улучщает результат.

6. Многопараметрическая модель долгопериодных вариаций КЛ

$$\nu(t) = a_0 + a_{\eta_{HCS}} \eta_{HCS}(z, t, \tau_{\eta_{HCS}}) + a_{i_{CME}} i_{CME}(1, t, \tau_{i_{CME}}) + a_{A_L} \overline{A}_L(1, t, \tau_{A_L}) + a_{B_{ss}} \overline{B}_{ss}(1, t, \tau_{B_{ss}}) + a_{B_{pol}} \overline{B}_{pol}(1, t, \tau_{B_{pol}})$$

Верхняя панель – вклад от изменений: наклона токового слоя HCS (зеленая кривая), среднего магнитного поля Солнца B_{ss} (коричневая), CME индекса (розовая) и площади корональных дыр A_L (синяя): а) 21-22 и b) 23-24 циклы. Нижняя панель – амплитуда a_{10} вариаций плотности КЛ с жёсткостью 10 ГВ и результат моделирования вариаций (сплошная черная кривая) [Белов и др., 2020]. $\sigma = 0.18\%$, $\rho = 0.94$.

Bpol учтено неявно.

6. Многопараметрическая модель долгопериодных вариаций КЛ

В каком направлении возможно дальнейшее развитие моделирования долговременных вариаций космических лучей? В гелиосфере развиваются множество нелинейных и сложных физических процессов. Просто подбирать необходимый набор параметров для построения моделей **совсем не разумный путь**. Сегодня имеется общепринятый подход для решения таких задач, а именно нейронные сети, которые хорошо подходят для моделирования и прогнозирования таких процессов как долговременные вариации космических лучей.

Простейший пример нейронной сети для моделирования долговременных вариаций с одним скрытым слоем

Вывод. В случае двухпараметрической модели для одного цикла СА среднеквадратичное отклонение модели 0.27 %, коэффициент корреляции достигает 0.98. В случае многопараметрической модели среднеквадратичное отклонение модели уменьшается до 0.18 %, но коэффициент корреляции ухудшается до 0.94, а модель справедлива для всех циклов солнечной активности. Многопараметрическая модель построена на широком наборе параметров η_{HCS} , Bss, i_{CME} , Bpol, A_L .

Ближайшие задачи. Для 6 циклов СА на основе нейронных сетей разработать многопараметрическую модель долгопериодных вариаций КЛ с большим пространством параметров.

7. Жесткостной спектр долгопериодных вариаций

Параметры спектра вариаций галактических КЛ а₁₀, R₁ и у, и стандартная статистическая погрешность о при моделировании спектра вариаций формой (1) в [Белов и др., 2018]. Заменить на новый !!!

Спектральные характеристики долговременных вариаций КЛ определяются глобально спектрографическим методом GSM. В нулевом приближении решение задачи сводится к решению системы интегральных уравнений Фредгольма І-го рода:

$$v^{i} = a_{1} \int_{R_{c}^{i}}^{R_{U}} W^{i}(R) \cdot \partial J / J(R) dR \qquad (1)$$

где в качестве ядра интегрального уравнения выступает функция связи Wⁱ(R), а в качестве неизвестной функции – спектр вариаций dJ/J, *R*₁₁ верхняя жесткость частиц, которые еще способны модулироваться в гелиосфере. Спектр вариаций космических лучей представлялся в трехпараметрическом виде

$$\partial J/J(R) = a_1(R_L + R)^{-\gamma}$$
 (2)

При решении задачи привлекались данные мировой сети нейтронных мониторов [nmdb, 2021], стратосферных наблюдений [Stozhkov et al., 2007] и данных мюонного телескопа Нагойя [gmdn, 2021]. 11

7. Дрейфовые эффекты и зависимость модуляции от энергии

Спектр вариаций КЛ, определенный из экспериментальных данных за длительный период, дает возможность проверить некоторые выводы теории гелиосферной модуляции КЛ, касающиеся роли магнитного дрейфа частиц в циклах с различным направлением глобального магнитного поля Солнца.

В приближении слабой модуляции [*Kota,* 1979] уменьшение интенсивности КЛ в гелиосфере *δN* определяется потерями энергии частиц ΔE:

$$\partial N / N = (2 + \gamma) \Delta E / E$$
⁽²⁾

где ү - показатель дифференциального спектра КЛ. Потери энергии в идеализированной гелиосфере радиуса *R* с плоским нейтральным токовым слоем определяются выражением [Kota, 1979]

$$\Delta E = \left| q \Phi \right| + p \int_{r}^{R} \frac{u}{\lambda} dr \tag{3}$$

здесь *u* -скорость солнечного ветра, λ, *q* и *p* - длина свободного пробега, заряд и импульс частиц, Ф — некая электрическая разность потенциалов.

7. Дрейфовые эффекты в циклах

При А>0 ГКЛ попадают в гелиосферу в полярных областях, дрейфуют в неоднородном магнитном поле по широте к экватору, и уходят из гелиосферы вдоль нейтрального токового слоя. При дрейфе от полюса к экватору частицы теряют энергию, равную потенциалу гелиосферы Φ_0 и определяется магнитным полем B_0 , радиусом r_0 и скоростью вращения Солнца Ω , но может быть выражен через скорость солнечного ветра и азимутальную компоненту магнитного поля B_e на орбите Земли: $\Phi = \Phi_0 = B_0 r_0^2 \Omega / c = 180 MV \frac{V}{400 km/c} \frac{B_e}{3 \cdot 10^{-5} G}$

A>0

$$\Delta E = \left| q \Phi \right| + p \int_{r}^{R} \frac{u}{\lambda} dr$$
(3)

При отрицательной полярности A<0 протоны дрейфуют из внешней гелиосферы вдоль нейтрального токового слоя, затем по широте к полярным областям и покидают гелиосферу за счет положительной дрейфовой скорости на полюсах. Следовательно, разность потенциалов **Ф=0.** Т.о., модуляция определяется только потерями энергии при распространении в экваториальной области (второе слагаемое в выражении (3)).

[Jokipii et al., 1977]

7. Зависимость модуляции от энергии

(2)

(3)

Важно, что слагаемые в выра кении (3) имеют разную зависим сть от энергии. Для энергий частиц больше нескольких ГэВ рассеяние присходит на магнитных неоднородностях с масштабами меньшими гирорадиуса частиц. В этом случае теория предсказывает квадратичную зависимость длины свободного пробега от импульса частиц **λ~p²** [Доленнов и др., 1966]. При меницих энергиях длина свободного пробега слабо зависит от импульса частиц.

(диффузия) Таким образом, в минимуме отрицательных циклов солнечной активности, когда наклон токового слоя мал ожидается *р*-2 зависимость модуляции. В реальной ситуации наклон увеличивает длину пути частиц вдоль токового слоя, то есть замедляет их движение к Земле, что должно приводить к большей модуляции [Долгинов и рр., 1966]. Однако при больших наклонах выражение (2) неприменимо. Ожидается, что при достаточно больших наклонах средняя скорость движения на экваторе определяется только дрейфом в неоднородном прле, что соответствует зависимости **р**-1 модуляции и вариаций.

(дрейф) В минимумах положительных иклов модуляция в основном определяется первым слагаемым в выражении (3) и ожидается **р**⁻¹ зависимость модуляции и вариаций. Влияние наклона токового слоя минимально. Ближе к максимуму когда наклон велик, дрейф частиц вблизи токового слоя, направленный во внешнюю гелиосферу может частично компенсировать противоположно направленный дрейф частиц у полюсов, что приведет к усилению модуляции. Зависимость модуляции от энертии не изменится.

Долговременная модуляция космических лучей взгляд с орбиты Земли

Белов А.В., Гущина Р.Т., Оленева В.А., Янке В.Г.

Инстит

земного магн гизма, ионосферы и распространения радиоволн им. Н.В.Пушкова (ИЗМИРАН) 3rd ISCRA, Москва, 2021

Содержание

1. Введение

2. Изотропное приближение

- 3. Связь вариаций КЛ с СА
- 4. Запаздывание, гистерезис
- **5**. Индексы и набор параметров моделирования
- 6. Многопараметрическая
- модель вариаций КЛ
- 7. Жесткостной спектр вариаций КЛ

8. Анизотропное приближение
9 GSM и экваториальная компонента первой гармоники анизотропии
10. GSM и северо-южная составляющая анизотропии

11. КА и наземная сеть

12. Структура гелиосферы по данным Ulysses13. КЛ на поверхности Марса и Земли

14. Сравнение PAMELA, AMS-02 и GSM

15. Экспериментальный спектр вариаций

Ближайшие задачи

9. Долговременные изменения экваториальной компоненты первой гармоники анизотропии

 $v^{i} = aC_{0}^{i}(\gamma) + C_{x}^{i} \cdot A_{x} + C_{y}^{i} \cdot A_{y} + C_{z}^{i} \cdot A_{z}$

Векторная диаграмма солнечно-суточной анизотропии КЛ, полученная по часовым данным сети NM методом GSM и примеры некоторых отдельных событий. [Белов и др., 2015]

Вывод. Фазой анизотропии управляет 22 летний цикл Хейла. Эта регулярная картина драматически изменяется. Амплитуда анизотропии подчиняется 11-летнему циклу СА. При A<0 фаза ≥18 h, при A>0 фаза ~15 h. [Крымский, 1964; Паркер 1965; Levy, 1976]

WHAT'S NEXT? Ближайшие задачи. Актуализировать «сцепленную» векторную диаграмму векторов экваториальной компоненты первой гармоники 16 анизотропии КЛ.

10. Долговременные изменения северо-южной составляющей анизотропии

Полярность поля в секторе [Svalgaard, 1976] или магнитная индукция компонент поля B_{IMF} у Земли.

Ток Холла. Стационарная северо-южная анизотропия [B grad n] представляет собой поток, управляемый радиальным градиентом космических лучей grad n. Сравнение северо-южной анизотропии *A*_{NS}, полученной различными авторами по данным пары нейтронных мониторов (медианная жесткость 17 GV): [Chen et al., 1993], [Munakata et al., 2014], [Paper I] и северо-южная анизотропия, полученная методом GSM по данным сети нейтронных мониторов [Oleneva et al., 2021].

Вывод. Амплитуда северо-южной анизотропии подчиняется 11-летнему циклу солнечной активности. Амплитуда достигает 0.1%.

10. Долговременные изменения северо-южной составляющей анизотропии

Сравнение северо-южной анизотропии *A_{NS}*, по данным пары нейтронных мониторов (медианная жесткость 17 GV) мюонных телескопов [Munakata et al., 2014].

Вывод. Амплитуда северо-южной анизотропии по данным МТ также достигает 0.1%, но смещена на 0.1%. Отличается от NM также временной ход анизотропии МТ.

10. Долговременные изменения северо-южной составляющей анизотропии

Амплитуда нулевой гармоники (верхняя панель) [Белов и др., 2018], анизотропия A_z (средняя панель) и радиальный градиент Gr_r космических лучей (нижняя панель) по данным [Paper I] (черная линия) и [Oleneva et al., 2021] (красная линия).

Вывод. Радиальный градиент Gr_r космических лучей по данным северо-южной анизотропии NM меняется в пределах от десятых долей до 3 %/AU и более в периоды максимальной CA.

Ближайшие задачи. Провести оценку градиентов плотности космических лучей и других параметров, определяющих модуляцию космических лучей, по данным GSM на основе данных анизотропии космических лучей за весь наблюдательный период (для n и µ); исследование долговременных изменений параметров, определяющих модуляцию космических лучей.

Долговременная модуляция космических лучей взгляд с орбиты Земли

Белов А.В., Гущина Р.Т., Оленева В.А., Янке В.Г.

Инстит

земного магногизма, ионосферы и распространения радиоволн им. Н.В.Пушкова (ИЗМИРАН) 3rd ISCRA, Москва, 2021

Содержание

1. Введение

2. Изотропное приближение

- 3. Связь вариаций КЛ с СА
- 4. Запаздывание, гистерезис
- **5**. Индексы и набор параметров моделирования
- 6. Многопараметрическая модель вариаций КЛ
- 7. Жесткостной спектр вариаций КЛ

8. Анизотропное приближение
9. GSM и экваториальная компонента первой гармоники анизотропии
10. GSM и северо-южная составляющая анизотропии

11. КА и наземная сеть

 Структура гелиосферы по данным Ulysses
 КЛ на поверхности Марса и Земли
 Сравнение РАМЕLA, AMS-02

- и GSM
- **15**. Экспериментальный спектр вариаций

Ближайшие задачи

12. Пространственная структура гелиосферы и ее циклические изменения по данным Ulysses

Меридиональный разрез пространственного распределения протонов> 2 ГэВ / н в сфере 5 а.е. во время солнечного минимума и солнечного максимума. Темные и светлые области соответствуют низкой и высокой интенсивности соответственно.

Гелиоширотное распределение ГКЛ. [Белов и др., 2003; Belov et al., 2003]

Плотность ГКЛ при A>0, Smax, A<0. Высокая интенсивность – красный цвет, синий – низкая. TS – пунктир, волнистая – HCS [Kota, 2016]

High Low min max A>0 A > <1994-1996 1998-2001 -10 1 -20 A>0 -30 1970 1980 2010 1960 1990 2020 ~1GeV *t.* голы 22-летние вариации 4<0 Max Max A<0 Герасимова и др., 2017 10 15 Time [vr] 22-летние вариации

Вывод. В минимуме СА плотность КЛ сильно зависит от гелиодолготы и почти не зависит от расстояния до Солнца. В максимуме, напротив, широтная зависимость уменьшается, а радиальная становится главной. Величина 11-летней вариации КЛ вблизи полюсов оказывается существенно больше, чем вблизи гелиоэкватора, и, в частности, на Земле. Радиальный градиент ~3.7 %/AU для протонов > 2ГэВ

WHAT'S NEXT? Ближайшие задачи. Важно было бы получить меридиональный разрез пространственного распределения протонов по данным Ulysses и сети нейтронных мониторов для A<O (2002-2008).

[Kota, 2016]

13. Космические лучи на поверхности Марса и Земли

Долгосрочное поведение вариации (синяя линия) марсианского детектора КЛ RAD. ФП-ния величиной> 4% на поверхности Марса отмечены красным стрелки. Кружками обозначены ФП, наблюдаемые как на Марсе, так и на Земле [Papaioannou at al., 2019].

Моделирование ICME для января 2014 г. (верхняя панель) и результирующие FD на Марсе и Земле (нижняя панель)

Ближайшие задачи. Получить данные о ФП в других точках гелиосферы и изучить пространственное распределение КЛ в межпланетных возмущениях.

14. Сравнение долговременных наземных изменений с данными PAMELA и AMS-02

Как оценить качество работы наземных детекторов ? Как оценить систематические ошибки GSM ? KА Почему при обработке данных наземных детекторов мы вынуждены работать с вариациями?

Калибровка детектора частиц КА проводится на ускорителе и, при известном геометрическом факторе, определяются *J=N/S*Ω энергетические спектры частиц. **Переход к** вариациям космических лучей фактически означает "калибровку относительно начального базового момента", т.е. относительно нуля.

Прямые измерения вблизи 10 GV: магнитный спектрометр PAMELA [Adriani et al., 2017] и AMS-02 [Aguilar et al., 2018]. Геометрический фактор MC PAMELA 21.5 cm²sr (4/8%), AMS-02 ~0.5 m²sr (1.5%) [Ting, 2013], а данные описаны в padote [DiFelice et al., 2017]. GSM ~0.3%±syst.

Вывод. Хорошее согласие. Нет дрейфа. Относительно одной базы. Для 2012-2015 годы AMS-02 дает 2x увеличение вариаций. 23

Сеть

14. Сравнение долговременных наземных и аэростатных стратосферных измерений

Сравнение может быть проведено и для более раннего периода.

Временные изменения потока протонов GCR на 1AU по данным наземной сети детекторов и сравнение с прямыми измерениями. Точками показаны некоторые данные баллонного стратосферного зондирования. Ссылки в [Yanke et al., 2021; Белов и др., 2021].

Вывод. Методом GSM проведена оценка потока КЛ за пределами магнитосферы за весь период мониторинга. Удовлетворительное согласие с баллонными стратосферными измерениями.

Ближайшие задачи. Провести калибровку данных GSM после публикации новых данных AMS-02, включающих минимум 2020 года. Уточнить 24 результат для баллонных стратосферных измерений.

15. Экспериментальный спектр вариаций космических лучей

При решении обратной задачи необходимо знать спектр вариаций

$$v^{i} = \int_{R_{c}^{i}}^{R_{U}} W^{i}(R) \cdot \partial J / J(R) dR$$

Для некоторых периодов в широком диапазоне жесткостей первичная вариация, соответствует простому степенному закону R⁻¹ [Belov, 2000].

мониторами и *IMP-8* [IMP-8 Data: 1997] вариаций и их аппроксимация степенным спектром жесткости. Полярность *A>0*. Данные - январь 1993, база 1996. Диапазон жесткостей 0.1 -10 ГэВ.

15.Экспериментальный спектр вариаций космических лучей на орбите Земли по данным AMS-02

Пример результата анализа для периода отрицательной (слева) и положительной полярности (справа) IMF. На средних панелях спектры частиц и найденные на их основе спектры вариаций - на нижних панелях. [Yanke et al., 2021]

Ближайшие задачи. После публикации данных AMS-02 включающих минимум 2020 года уточнить экспериментальный спектр вариаций КЛ. При GSM анализе перейти от эмпирического спектра вариаций $\partial J/J = a_1(R_L + R)^{-\gamma}$ найденному экспериментально спектру вариаций $\partial J/J = a_1R^{-\gamma}\exp(-R/R_H)$

Разнообразие спектров модуляции и сложность их формы еще нуждаются в теоретическом обосновании.

Эмпирический спектр

$$\partial J/J = a_1 (R_L + R)^{-\gamma}$$

Каков спектр вариаций?

Уникальную возможность оценки спектров вариаций КЛ для 1-20 GV на орбите Земли дают высокоточные данные орбитального магнитного AMS-02 [Aguilar et al., 2018], SΩ=0.5 m²sr, что обеспечивает стат. точность 1.5% для Каррингтоновского оборота. Наиболее удачным для аппроксимации экспериментального спектра вариаций частиц в широком диапазоне жесткостей оказался степенной спектр, модулированный экспонентой в области верхних жесткостей.

Вывод.

 $\partial J / J = a_1 R^{-\gamma} \exp(-R/R_H)$

Ближайшие задачи. В перспективе года, пяти лет

1. На основе нейронных сетей разработать многопараметрическую модель долгопериодных вариаций КЛ с большим набором параметров.

2. По единой методике исследовать гистерезис и запаздывание вариаций космических лучей для всех солнечных циклов и, в частности, для 23 и 24 цикла.

3. Разработать и создать базу данных (часового и среднесуточного разрешения) солнечных и межпланетных параметров с автоматическим обновлением для решения задач LTV.

4. Развивать экспериментальную базу для стабильного мониторинга долговременных вариаций: нейтронные мониторы, мюонные телескопы, в частности, счетчиковые телескопы (Kato et al., 2021), большая якутская ионизационная камера.

5. Определить спектр вариаций нулевой гармоники экспериментально по данным AMS-02.

Ближайшие задачи

6. Актуализировать «сцепленную» векторную диаграмму векторов экваториальной компоненты первой гармоники анизотропии космических лучей.

7. Выполнить оценку и долговременные изменения параметров градиентов плотности космических лучей и других параметров, определяющих модуляцию космических лучей по данным GSM на основе данных анизотропии космических лучей.

8. Получить меридиональный разрез пространственного распределения протонов по данным Ulysses и сети нейтронных мониторов для A<0 (2002-2008).

9. Провести калибровку данных GSM после публикации новых данных AMS-02, включающих минимум 2020 года.

10. С учетом химического состава ретроспективно и в квазиреальном времени получить потоки частиц на орбите Земли.

11. Получить мгновенные значения модуляционного потенциала космических лучей.

12. Уточнить экспериментальный спектр вариаций космических лучей с учетом минимума 2020 г.

13. По прямым экспериментальным данным исследовать роль остаточной модуляции космических лучей в гелиосфере.

Спасибо за внимание