

First results and Current status of the COHERENT experiment with

LAr A. Kumpan on behalf of COHERENT Collaboration

Coherent Elastic Neutrino Nucleus scattering

CEvNS is a fundamental process predicted in 1974 and observed for the first time by the COHERENT Collaboration in 2017

 $\nu + A \rightarrow \nu' + A'$

D.Z. Freedman, Phys. Rev. D 9 (1974) V.B. Kopeliovich and L.L. Frankfurt, ZhETF Pis. Red. 19 (1974)

Total cross section of the process can be described by the formula:

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} [Z(1 - 4\sin^2\theta_W) - N]^2 F^2(Q^2)$$

$$\sigma_{tot} \approx \frac{G_F^2 N^2}{4\pi} E_v^2 \sim N^2 \qquad Q \leq \frac{1}{R}$$

$$\sigma_{CEvNS} > \sigma_{IBD} \sim 10^{-42} cm^{-2}$$
 at least by 2 orders of magnitude

Neutrino Energy (MeV)

Alex Kumpan, NPhE-2020

Physics Implications

The most important physics implications of CEvNS are:

- Physics Beyond the Standard Model
 - Non Standard Interactions
 - Background to Dark Matter searches
- Reactor Monitoring

CEvNS Around The World

Spallation Neutron Source (SNS)

SNS as a neutrino source

SNS neutrino energy spectrum

Proton beam energy ~ 1 GeV Repetition rate — 60 Hz (bunch FWHM is 350 ns) Neutrino Flux — $4.3 \cdot 10^7$ cm⁻²s⁻¹ at 20 m

SNS neutrino timing

7

COHERENT at the SNS

Liquid Argon for CEvNS

- Low N nucleus for CEvNS measurement
- Large scintillation yield of ~ 40 photons/keVee
- Well-measured quenching factor
- Pulse shape discrimination (PSD)/Particle ID (PID) capabilities for nuclear/electron recoil separation
 - ~6 ns singlet light
 - ~1.6 µs triplet light
- Electron recoil (ER) events mostly triplet light, Nuclear recoil (NR) events mostly singlet light

COH-Ar-10 (CENNS-10) Liquid Argon Detector

CENNS-10 was deployed at the SNS at 2016

Detector key features:

- 24 kg fiducial volume
- 2 x 8" Hamamatsu PMTs, 18% QE at 400 nm
- Tetraphenyl butadiene (TPB) coated side reflectors and PMT windows
- Pb (10 cm), Cu (1.25 cm), H₂O (20 cm) shielding
- Engineering Run (early 2017): high threshold, no lead shielding: (Phys. Rev. D100 (2019) no.11, 115020)
- First Production Run (July 2017-December 2018): improved threshold, blind analysis with two parallel groups. (arXiv:2003.10630)

Parallel Blind Analyses

To reduce potential bias on result during analysis procedure CENNS-10 First Production Run was analysed by 2 different groups (A and B):

- 1. Common CENNS-10 Monte Carlo model was created;
- 2. SNS beam-on data were not seen until cuts finalized;
- 3. No cut-values or results shared between groups before data opening

COH-Ar-10 (CENNS-10) Calibrations

- Calibrate detector with different gamma sources:
 - ⁵⁷Co
 - ^{83m}Kr
 - ²⁴¹Am

20

40

10

15

20

Reconstructed Energy (keVee)

25

- Measured light yield: $4.6 \pm 0.4 \text{ PE/keV}$
- Detector resolution is ~9% at 41.5 keV
- Calibrate detector nuclear recoil response using AmBe source

60

n recoil

Recoil Energy (keVnr)

100

35

30

1

40

0.9

0.8

0.7

0.6 ப⁶0.5

0.4

0.3 0.2

0.1E

Backgrounds

Background components:

- Beam related neutron (BRN) normalization from no-water shielding data
- Main beam-unrelated component is ³⁹Ar with full shielding
 - Directly measured through off-beam triggers

Predicted Event Distributions for Likelihood Analysis (B)

Perform 3D binned likelihood analysis in energy, F90, and time: Shapes of distributions for analysis B

Events/(0.05)

Cuts for analysis B:

- Quality cut;
- Time cut -1 8 us;
- Energy cut 20-150 PE;
- Fiducial volume cut 0.2-0.8;
- F90 cut 0.5-0.8;

Neutrons and neutrino spectra were simulated

Steady-State background was extracted from "strobe" (off-beam) data

Predictions for analysis B

CEvNS	101 ± 12
Beam Related Neutrons (BRN)	226 ± 33
Steady-State Bkg (SS)	1155 ± 45

Time, µs

After all the preparations were done beam data were opened

Experimental Data Fit

Projection of the best-fit maximum likelihood probability density function (PDF) from A (top) and B (bottom) Analyzes on ttrig (left), reconstructed energy (center), and F90 (right) along with selected data and statistical errors. The fit SS background has been subtracted to better show the CEvNS component

Likelihood Fit Results

fit ranges	Analysis A		Analysis B	
F_{90}	0.5 -	0.9	0.5 -	0.8
E (keVee)	0.0 - 1	20.0	4.1 -	30.6
$t_{\rm trig}$ (µs)	-0.1 -	4.9	-1.0 -	8.0
total events selected	3752		146	6
predicted				
CEvNS	$128 \pm$	17	$101 \pm$	12
BRN, prompt	$497~\pm$	160	226 +	22
BRN, delayed	$33 \pm$	- 33	220 I	- 33
SS	$3152~\pm$	25	$1155 \pm$	45
total events predicted	3779		148	2
fit				
CEvNS	$159 \pm$	43	$121 \pm$	36
BRN, prompt	$553 \pm$	- 34	222 +	93
BRN, delayed	$10 \pm$	11	222 I	20
SS	$3131~\pm$	23	$1112\ \pm$	41
total events fit	3853		145	5
fit systematic errors				
CEvNS F_{90} E dependence	4.5%		3.1°_{2}	%
CEvNS t_{trig} mean	2.7%		6.3%	
BRN E dist.	5.8%		5.2%	
BRN t_{trig} mean	1.3%		5.3%	
BRN t_{trig} width	3.1%		7.7%	
total CEvNS sys. error	8.5%		13%	6
fit results				
null significance (stat. only)	3.9σ		3.4	σ
null significance $({\rm stat.+sys.})$	3.5σ		3.14	σ

arXiv: 2003.10630

3D binned likelihood analysis in energy, F90, time space Best fit CEvNS counts of:

- 159 ± 43 (stat.) ± 14 (syst.) for analysis A
- 121 ± 36 (stat.) ± 15 (syst.) for analysis B
- Result (stat. only) rejects null hypothesis at least at 3.4 σ
- Result (stat. + syst.) rejects null hypothesis at least at $\sim 3.1 \ \sigma$
- Best fit result is within 1σ of SM prediction

Analysis results comparison

	Analysis B		Analysis A	
Data Component	Predictions	Analysis results	Predictions	Analysis results
CEvNS	101 ± 12	121 ± 36 (stat.) ± 15 (syst.)	128 ± 17	159 ± 43 (stat.) ± 14 (syst.)
BRN	226 ± 33	222 ± 23	497 ± 160	553 ± 34
SS Bkg	1155 ± 45	1112 ± 41	3154 ± 25	3131 ± 23

Flux averaged CEvNS cross-section:

$$\sigma_{meas} = \frac{N_{meas}}{N_{SM}} \sigma_{SM} = (2.2 \pm 0.7) \times 10^{-39} \ cm^2$$

Both analyses find significant excess of events within 1 σ of SM predictions

arXiv:2006.12659 – LAr data release

CENNS-10 continues data taking and 5σ (analysis A) significance is expected in 2021 19.11.2020 Alex Kumpan, NPhE-2020

arXiv: 2003.10630

CevNS cross section

Non-Standard Interactions (NSI)

Compute allowed regions in NSI parameter space

$$Q_W^2 \to Q_{\rm NSI}^2 = 4 \left[N \left(-\frac{1}{2} + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV} \right) + Z \left(\frac{1}{2} - 2\sin^2\theta_W + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV} \right) \right]^2$$

0.25 0.50 0.75 1.00

 $\varepsilon_{\alpha}^{dV}$

Limitations:

- Specifically v_e flavor-preserving quark-vector coupling parameter space
- Set all other $\varepsilon = 0$

19.11.2020

Large Liquid Argon detector

To study detailed characteristics of CEvNS process larger detector is needed to achieve higher event rate and lower threshold.

Ton-scale LAr detector **COH-Ar-750** is under development.

Key features:

- Based on experience of work with CENNS-10 detector;
- Single-phase LAr detector with 750 kg of total mass and 610 kg of fiducial volume;
- Light collection system includes TPB coated reflectors and 3' PMTs/SiPMs;
- Eventual use of low ³⁹Ar underground argon

COH-Ar-750 simulations

Event rates in 610 kg fiducial volume of ton-scale detector:

~ 3000 CEvNS events per year

~440 inelastic CC/NC events/yr $V_e^{+40}Ar \rightarrow e^{-} + {}^{40}K$

Beam-induced light Dark Matter

Summary

Using COH-Ar-10 detector the COHERENT experiment at the SNS successfully registered CEvNS on ⁴⁰Ar nuclei:

- First low-N measurement of CEvNS on ⁴⁰Ar with COH-Ar-10 detector
 - More then 3σ detection of CEvNS in ⁴⁰Ar with first production data
 - \sim -5 σ significance is expected in 2021
- Results are consistent with predictions of the Standard Model
- To study CEvNS in details a large liquid argon detector COH-Ar-750 is under development.

BackUp

Neutrino processes cross-section

CEvNS Cross Section

19.11.2020

Alex Kumpan, NPhE-2020

CEvNS Around The World

Future COHERENT Efforts: CENNS-750 & HPGE

CENNS-750:

Future COHERENT efforts: Nal[TI] & D₂O

- Ton-scale Nal[TI] detector array for simultaneous CEvNS/¹²⁷I charged current measurements
- Ton-scale D₂O Cherenkov detector to reduce neutrino flux uncertainty:
 - v_e-d charged current cross section theoretically known to 2-3%

19.11.2020

Alex Kumpan, NPhE-2020

Non-Standard Interactions (NSI)

Addition to SM Lagrangian

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon^{f,P}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}Pf)$$

- Modifies weak charge
- NSI manifest as scaling of
- > expected CEvNS cross section
- CEvNS sensitive to both nonuniversal and flavor changing neutra currents

1.00 0.75 - 10¹ 0.50 Suppression Match SM Pate 0.25 Nee. 0.00 100 -0.25-0.50 - 10-1 -0.75 -1.00 --1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 εdV

- J. Barranco et al., Phys. Rev. D 76 (2007)
- J. Billard, J. Johnston, B. Kavanagh, arXiv:1805.01798

$$Q_W^2 \to Q_{\rm NSI}^2 = 4 \left[N \left(-\frac{1}{2} + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV} \right) + Z \left(\frac{1}{2} - 2\sin^2\theta_W + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV} \right) \right]^2$$

Discovery of CEvNS

SNS Trigger

- SNS provides neutrinos in two regions after protons on target (POT): "prompt" (0-1.5 μs after POT) and "delayed" (1.5-5 μs after POT).
- Beam-related neutron background measured only in prompt window. Delayed neutron measurements consistent with zero.
- Identical off-beam trigger 14 ms after accelerator trigger to measure beam-unrelated backgrounds in-situ.

Neutron Background Characterization

- Data from Engineering Run, analysis of 1.8 GWhr of SNS beam data from February-May 2017
- TPB coated acrylic backed by Teflon reflector and TPB coated acrylic disk
- Threshold (80 keVnr) not low enough for 0.2 sensitive CEvNS search
- Optimized cuts based on signal/noise
- Beam-related excess consistent with previous measurements/simulations
 - Delayed window excess consistent with zero due to high threshold and small beam sample
 - Use to constrain prompt beam-related neutron backgrounds for FirstProduction Run
- Also, place limit on CEvNS cross section

34

Likelihood Fit Results

3D binned likelihood analysis in energy, F90, time space

Best fit CEvNS counts of:

121 ± 36 (stat.) ± 15 (syst.)

- Result (stat. only) rejects null hypothesis at 3.4 σ
- Result (stat. + syst.) rejects null hypothesis at ~ 3.1 σ
- Best fit result within 1σ of SM prediction

Event Selection

Quality cuts:

- > Signal start is on 20 ns window
- > Waveform has only one event

Time cut:

 Event should be inside prompt or delayed time window

Energy cut:

Region 4-30 keVee allowed;

Fiducial Volume (F.V.) cut:

- Ratio of top PMT light to full amount of light detected is 0.2-0.8;
- PSD cut

Experimental Data Fit

Likelihood Fit Results

3D binned likelihood analysis in energy, F90, time space

Best fit CEvNS counts of:

121 ± 36 (stat.) ± 15 (syst.)

- Result (stat. only) rejects null hypothesis at 3.4 σ
- Result (stat. + syst.) rejects null hypothesis at ~ 3.1 σ
- Best fit result within 1σ of SM prediction

Predictions and analysis results

Data component	Predictions	Analysis results
CEvNS	101 ± 12	121 ± 36 (stat.) ± 15 (syst.)
BRN	226 ± 33	222 ± 23
SS	1155 ± 45	1112 ± 41

Systematic Errors

CEvNS Rate Measurement Errors

Additional Likelihood Fit Shape-Related Errors

Error Source		Error Source	
Energy region	4.7%	PSD distribution shape	3.1%
PSD distribution shape	3.3%	CEvNS Arrival Mean Time	6.3%
Fiducial Volume	1.2%	BRN Arrival Time Mean	5.3%
Nuclear Form Factor	3%	BRN Arrival Time Width	7.7%
SNS Predicted Neutrino Flux	10%		
Other systematic sources	1%	BRN distribution shape	5.2%
		Other systematic sources	<1%
Total Error:	12.0%	Total Error:	12.8%

Non-Standard Interactions (NSI)

Compute allowed regions in NSI parameter space

Limitations:

- Specifically v_e flavor-preserving quarkvector coupling parameter space
- Set all other $\varepsilon = 0$

Alex Kumpan, NPhE-2020