

TREK

Исследование угловых распределений групп мюонов высокой плотности по данным координатно-трекового детектора на дрейфовых камерах

Докладчик: Трошин Иван Юрьевич

aurumgo@gmail.com

Соавтор: к.ф.-м.н. Задеба Егор Александрович

Детектор ТРЕК и прототип детектора

264 дрейфовые камеры Площадь одной камеры 2 м² Площадь детектора ТРЕК 250 м² 14 дрейфовых камер Площадь прототипа детектора 14 м²

Цель

Апробация методов реконструкции событий групп мюонов с высокой плотностью по данным с двухплоскостного детектора на дрейфовых камерах

Задачи

Определить основные характеристики камер, необходимые для реконструкции треков

Построить распределения оп зенитному и азимутальному углу по данным прототипа ТРЕК

Проверка методов реконструкции на данных с двухплоскостного детектора на дрейфовых камерах

Дрейфовая камера ИФВЭ

Поперечное сечение дрейфовой камеры

Продольное сечение дрейфовой камеры

Принцип работы дрейфовой камеры

- Координатная точность ~ 1 мм
- Угловая точность ~ 2°
- Время дрейфа электронов < 6 мкс
- Скорость дрейфа 0,045 мм/нс
- Состав газовой смеси: 94% Ar+ 6% CO₂
- Разрешение двух треков ~ 5-6 мм

Схематичное представление детектирования частиц

Реконструкция треков, метод перебора

Распределение сигналов одного канала ДК по времени.

Схематичное представление реконструкции трека заряженной частицы в дрейфовой камере

 $y = x \times tan(K) + B$

Уравнение трека частицы

Визуализация "идеальных" одиночных событий

Конечная реконструкция

Реконструкция треков

Распределение зарегистрированных одиночных событий вдоль дрейфовой камеры.

Распределение зарегистрированных одиночных событий по проекционному углу.

Метод поиска прямолинейного участка

Принцип реконструкции события методом поиска прямолинейного участка

Визуализация события метода поиска прямолинейного участка

Реконструкция метод поиска прямолинейного участка

Распределение зарегистрированных событий вдоль дрейфовой камеры.

Распределение зарегистрированных событий по проекционному углу.

Метод гистограммирования

Принцип реконструкции события методом гистограммирования

Визуализация события метода гистограммирования

Метод гистограммирования

Схематичное представление метода гистограммирования

Зависимость числа обнаруженных параллельных треков от угла.

Множественные события по двум плоскостям

Распределение зарегистрированных событий в верхней и нижней плоскости по числу найденных треков.

Распределение событий по плотности частиц

Зенитный и азимутальный угол методом гистограммирования

Распределение событий по зенитному углу

Распределение событий по азимутальному углу.

Зенитный и азимутальный угол одиночных треков

Распределение событий по зенитному углу

Распределение событий по азимутальному углу.

Заключение

- Определены основные характеристики камер, нужные для реконструкции.
- Реализованы программы реконструкции методами: перебора, поиска прямолинейного участка, гистограммирования.
- По данным двухплоскостного детектора построены распределения зенитного и азимутального угла по методу гистограммирования
- Программы протестированы на данных с двухплоскостного детектора на дрейфовых камерах

Спасибо за внимание

Докладчик: Трошин Иван Юрьевич

aurumgo@gmail.com

Руководитель: к.ф.-м.н. Задеба Егор Александрович

Метод гистограммирования

Отклонение для трека по четырём точкам

Отклонение для трека по трём точкам

Рис. В.1. Экспериментальные и смоделированные распределение групп мюонов, зарегистрированных в установках ALEPH (слева) и DELPHI (справа).

Рис. 2.9: Скорость дрейфа электронов (см/мксек) в смеси Ar-*CO*₂ в зависимости от напряженности электрического поля (приведено к давлению 760 мм.рт.ст).