Международная молодежная школа-конференция по ядерной физике и

технологиям

уникальная научная установка Экспериментальный комплекс НЕВОД

Тестирование элементов сцинтилляционного мюонного годоскопа

Целиненко М.Ю. (<u>makson.tsel@gmail.com</u>), Пасюк Н.А.(<u>nex_47@mail.ru</u>)

Национальный Исследовательский Ядерный Университет МИФИ, НОЦ НЕВОД

Москва, 19 ноября 2020 г.

Введение

- В НИЯУ МИФИ создается мюонный годоскоп для мюонографии различных объектов естественного и искусственного происхождения. Основным детектирующим элементом являются длинные и узкие (3000×23×7 мм³) сцинтилляционные стрипы с оптоволоконным светосбором на кремниевые фотоумножители.
- Годоскоп состоит из 4-х Х-Ү координатных плоскостей (КП, 256 стрипов). Каждая КП представляет два слоя с ортогональной ориентацией стрипов. Один слой – 4 базовых модуля (БМ) по 32 стрипа + 32 SiPM, сигналы с которых поступают на плату считывания на основе 32-канальной БИС ASIC PETIROC.
- Для массового тестирования была разработана технология тестирования и отбора сцинтилляционных стрипов и SiPM, из которых был создан полноразмерный базовый модуль нового мюонного годоскопа.

Стенд для тестирования и отбора сцинтилляционных стрипов

Общий вид стенда. 1 – стеллаж; 2 – корпус стенда с открытыми крышками; 3 – рама для стрипов.

Тестирование стрипов с помощью калибровочного телескопа (КТ) кт. - лва сцинтип

- КТ два сцинтилляционных счетчика.
- Размеры пластины пластического сцинтиллятора: 200×100×20 мм³.
- ▶ Регистрация: ФЭУ-85.
- Рабочее напряжение питания 900 В.
- Для удаления мягкой компоненты между счетчиками устанавливалась пластина свинца толщиной 5 см.
- Размеры сцинтилляционных пластин в телескопе позволяют снимать сигналы сразу с 4-х стрипов, уложенных в раму вплотную друг к другу.
- Темп регистрации сигналов со стрипа - ~ 0.16 соб⁻¹.

Тестирование стрипов с помощью бета-спектрометра

- Источник электронов стронций 90.
- Энергия электронов 1.8<E<2.3 МэВ.
- Используется дополнительный
 ФЭУ для запуска АЦП.
- точность позиционирования поперёк стрипа ±1.5 мм;
- компактность и удобство эксплуатации

Методика отбора стрипов

Распределение числа фотоэлектронов для стрипа №5 на отметке 50 см, измерение с помощью мюонного телескопа Распределение числа фотоэлектронов для стрипа №5 на отметке 50 см, измерение с помощью бета-спектрометра

Методика отбора стрипов

Распределение числа фотоэлектронов для стрипа №5 на отметке 250 см, измерение с помощью мюонного телескопа Распределение числа фотоэлектронов для стрипа №5 на отметке 250 см, измерение с помощью бета-спектрометра

Методика отбора стрипов

Отношение среднего числа фотоэлектронов при измерении с помощью мюонного телескопа к среднему числу фотоэлектронов при измерении с помощью бета спектрометра.

- Измерения проводятся в двух точках на расстояниях: 50 и 250 см от SiPM.
- Полученные данные фитируются линейной зависимостью :

 $N_{p.e,\mu} = A + B * N_{p.e,\beta}$ $A = 6,753 \pm 0,129$ $B = 1,591 \pm 0,009$

Возможность тестировать стрипы используя только бета спектрометр, затрачивая значительно меньше времени на одно измерение.

Стенд для тестирования кремниевых фотоумножителей (SiPM)

- З2-канальная плата САЕN A1702/DT5702
- Быстрый формирователь с временем пика 15 нс.
- Медленный формирователь с настраиваемым временем пика в диапазоне 12,5 нс до 87,5 нс.
- С помощью платы можно измерять распределение сигналов на каждом канале регистрации откликов 32-х SiPM.

Результаты тестирования кремниевых фотоумножителей

Распределение амплитуд сигнала для SiPM № 21549 при напряжении питания 54,7 В

Распределение амплитуд сигнала для SiPM № 21549 при напряжении питания 55,2 В

Результаты тестирования кремниевых фотоумножителей

11

Зависимость коэффициента усиления от напряжения питания для 10 SiPM

Из паспорта от Hamamatsu:

№ по порядку	№ канала платы САЕN	№ SiPm	Напряже ние питания
1	0	21547	55,67
2	2	21548	55,35
3	4	21549	55,64
4	6	21550	55,43
5	8	21551	55,34
6	10	21552	55,40
7	12	21553	55,30
8	14	21554	55,35
9	16	21555	55,39
10	18	21556	55,41

Результаты тестирования кремниевых фотоумножителей

Распределение числа кремниевых фотоумножителй по коэффициенту усиления при напряжении питания 55,2 В.

Распределение числа кремниевых фотоумножителй по коэффициенту усиления при напряжении питания 55,7 В.

Заключение

Проведено тестирование следующих элементов сцинтилляционного мюонного годоскопа:

- ≻ 66 сцинтилляционных стрипов, для которых определялся световыход в двух точках: 50 см и 250 см от SiPM.
- 96 кремниевых фотоумножителей, для которых определялся коэффициент усиления для трех напряжений питания, включая рабочее.
- Получены распределения числа SiPM по коэффициенту усиления для трех напряжений питания.

Полученные результаты использовались для создания полноразмерного прототипа базового модуля сцинтилляционного мюонного годоскопа.

Спасибо за внимание!

