





# Центральная трековая система эксперимента BM@N

Андрей Галаванов от лица группы BM@N GEM

Международная молодежная школа-конференция по ядерной физике и технологиям, 19.11.2020

### Ускорительный комплекс NICA



### Эксперимент ВМ@N

Цель эксперимента – изучение взаимодействий пучков тяжелых ионов с фиксированными мишенями в диапазоне энергий  $\sqrt{S_{NN}} = 2.3 \div 3.5$  ГэВ. Такие энергии хорошо подходят для изучения мезонов и гиперонов, имеющих в составе s-кварки, а также для изучения гиперядер, образующихся при слиянии  $\Lambda$ -гиперонов с нуклонами



Схема экспериментальной установки для сеансов с тяжелыми ионами

# Газовый электронный умножитель (GEM)



Стандартный GEM - это каптоновая пленка толщиной 50 мкм, покрытая с обоих сторон медным слоем толщиной 5 мкм, выступающем в качестве электродов. Методом химического травления в пленке изготавливают матрицу отверстий диаметром 70 мкм, и расстоянием между центрами отверстий - 140 мкм.



Электрическое поле в отверстиях.



Типичная схема тройного GEM-детектора



# GEM-детекторы в эксперименте BM@N



Схема анодных стрипов и газовых зазоров в детекторе

### **GEM-детекторы в эксперименте BM@N**



Анодная плоскость



#### Катодная плоскость



### Тесты детекторов на пучках Нуклотрона



# Сигналы от Л-гиперонов



# Полная конфигурация трековой системы



Снос электронной лавины под действием силы Лоренца





### Система механической поддержки детекторов



Активная область центральной трековой системы ~ 9.5 м<sup>2</sup>

Пространство для установки и выравнивания положения детекторов ограничено аппертурой магнита (1 м)

Разработана специальная система поддержки детекторов внутри анализирующего магнита с возможностью прецизионной установки положения детекторов

10.2020 – разработка системы поддержки детекторов 2021 – изготовление системы поддержки и установка детекторов в магнит



### Моделирование количества вещества



#### Тестовый стенд для исследования характеристик детекторов



1 этап – тесты 1632\*390 мм<sup>2</sup> детекторов, в процессе

2 этап- тесты 1632\*450 мм<sup>2</sup> детекторов

> Триггерная логика и система ВВ питания

GEM детекторы

DAQ

Сцинтилляционные счетчики

Цели: пространственное разрешение и эффективность регистрации



mm



### Газовая система

Основные требования:

- Стабильный поток и стабильная газовая смесь;
- 7 независимых каналов к каждой плоскости;
- Снижение и мониторинг содержания влажности и кислорода в смеси;



#### Заключение

Создание центральной трековой системы эксперимента BM@N находится в заключительной стадии.

Завершенные работы:

- Изготовлены 7 детекторов с активной областью 1632×450 мм<sup>2</sup>, которые протестированы на пучках дейтронов, углерода, аргона и криптона. Эти детекторы являются самыми большими GEM-детекторами в мире;
- Изготовлены 7 детекторов с активной областью 1632×390 мм<sup>2</sup>, которые прошли предварительное тестирование с использованием радиоактивного источника.
- Сборка тестового стенда для исследования детекторов на космических лучах;
- Проектирование системы механической поддержки детекторов внутри анализирующего магнита.

Активные работы:

- Исследование 7 детекторов с активной областью 1632×390 мм<sup>2</sup> на сигналах от космических лучей
- Модернизация газовой системы;

Планы на будущее:

- Проведение крупного цикла методических исследований старение, измерение однородности отклика детектора, зависимость сигнала от температуры и давления.
- Изготовление двух запасных детекторов.
- Разработка новой front-end электроники;

# Back up slides

#### Material budget of one Gem detector

| layer     | material                                                    | density [g/cm-3] | thickness (X) [cm] | X0 [cm] | X/X0 [%] |
|-----------|-------------------------------------------------------------|------------------|--------------------|---------|----------|
| gas       | ArCO2 (70/30)                                               | 0.0019           | 0.9                | 10960.2 | 0.0082   |
| copper    | copper                                                      | 8.96             | 0.0131             | 1.435   | 0.9129   |
| glue      | acrylic glue                                                | 1.25             | 0.02               | 32.1603 | 0.0622   |
| epoxide   | polyurethane (high dens.)                                   | 1.8              | 0.21               | 22.5351 | 0.9319   |
|           | Polyurethane<br>(medium dens.)                              | 0.59             | 0.21               | 68.7512 | 0.3055   |
|           | Polyurethane (low dens.)                                    | 0.25             | 0.1                | 162.253 | 0.1295   |
| honeycomb | nomex aramid<br>honeycomb<br>(kevlal chemical<br>structure) | 0.048            | 3.0                | 755.397 | 0.3971   |
| polyamide | polyamide                                                   | 1.14             | 0.025              | 36.4052 | 0.0687   |

### GEM HV divider scheme



490 mkA – working point for Ar (70) +  $CO_2$  (30) gas mixture 370 mkA – working point for Ar (90) + Isobutane (10) gas mixture 430 mkA – working point for Ar (80) + Isobutane (20) gas mixture

| Mixture                             | I, mkA | DR,   | Gem 1,V | TR1,  | Gem 2,V | TR2,  | Gem 3,V | IND,  |
|-------------------------------------|--------|-------|---------|-------|---------|-------|---------|-------|
|                                     |        | kV/cm |         | kV/cm |         | kV/cm |         | kV/cm |
| Ar (70) +                           | 490    | 1.17  | 402     | 2.58  | 382     | 3.68  | 363     | 4.18  |
| CO <sub>2</sub> (30)                |        |       |         |       |         |       |         |       |
| Ar (90) +                           | 370    | 0.88  | 303.4   | 1.92  | 288.6   | 2.78  | 273.8   | 3.16  |
| $C_4 H_{10}(10)$                    |        |       |         |       |         |       |         |       |
| Ar (80) +                           | 430    | 1.5   | 352.6   | 2.24  | 335.4   | 3.23  | 318.2   | 3.67  |
| C <sub>4</sub> H <sub>10</sub> (20) |        |       |         |       |         |       |         |       |

# **GEM and CSC electronics**

|                           | VA162                  | VA163                   |  |
|---------------------------|------------------------|-------------------------|--|
| Number of channels        | 32                     | 32                      |  |
| Input charge              | -1.5pC ÷ +1.5pC        | -750fC ÷ +750fC         |  |
| Shaping time              | 2÷2.5μs                | 500ns                   |  |
| Noise                     | 2000e ENC at 50pF load | 1797e ENC at 120pf load |  |
| Linearity positive charge | 1%                     | 0.5%                    |  |
| Linearity negative charge | 3%                     | 1.4%                    |  |
| Gain                      | 0.5 μA/fC              | 0.88µA/fC               |  |
| Total power max.          | 66mW                   | 77mW                    |  |





DAQ scheme

#### GEM efficiency (cosmic tests)



# GEM gas gain measurements





GEM gas gain for Ar(70)/CO2(30) and Ar(90)/Isobutane(10) gas mixtures