The 5th International Symposium on Cosmic Rays and Astrophysics (ISCRA-2025)

National Research Nuclear University MEPhI

Forbush-decreases in 2024 according to the data of the PRISMA-36 and "Neutron" facilities

D.M. Gromushkin, A.N. Dmitrieva, A.Yu. Konovalova, P.S. Kuzmenkova, Yu.N. Mishutina, E.P. Volkov, Sh.G. Ruziev

24 - 26 June, 2025

Установка «Нейтрон»

Схема установки «Нейтрон»

- 4 детектора
- эффективная площадь детектора: 0.75 м²
- расположение на разных уровнях
- делитель + дискриминатор-интеграторусилитель (12-й динод)
- АЦП: 20МГц, 11 бит, ± 1 В
- внутренний триггер

Установка работает с 2010 года

Исследование вариаций нейтронного фона под разной толщиной поглотителя

- 1-фотоумножитель ФЭУ-200
- 2 сцинтиллятор ZnS(Ag) + ⁶LiF
- 3 светозащитный корпус
- 4 светоотражающее покрытие

Установка ПРИЗМА-36

Схема установки ПРИЗМА-36 (4 этаж ЭК НЕВОД)

- 3 кластера по 12 детекторов
- размещение детекторов по сетке 3.6 м x 5.3 м
- площадь установки: 500 м²
- площадь регистрации: 13 м²

- сцинтиллятор ZnS(Ag)+⁶LiF
- фотоумножитель ЕМІ 9350КА
- делитель + интегратор-усилитель (анод)
- АЦП: 100МГц, 12 бит, ± 3.5 В
- внутренний триггер

Исследования вариаций нейтронного фона Исследования нейтронов в ШАЛ

Установка работает с 2024 года

Отечественные сцинтилляторы с добавками, чувствительными к тепловым нейтронам

Сцинтиллятор **ZnS(Ag) с LiF**, обогащение **до 90% изотопом ⁶Li** (светосостав СЛ6-5)

 6 Li + n \rightarrow 3 H + α + 4.8 M $_{2}$ B

Возможность **режекции сигналов** от регистрации нейтронов

Высокая **эффективность регистрации**

Возможность создания **больших детекторов**

Низкая чувствительность к **гамма излучению**.

Высокая помехоустойчивость

Эффективность захвата тепловых нейтронов ~ 20%

Характерные сигналы от сцинтиллятора

Регистрация заряженных частиц

Регистрация нейтрона

За счет долгого времени высвечивания возможна режекция сигналов

PSD (pulse shape discrimination) - это фундаментальное свойство некоторых сцинтилляторов, которое позволяет разделять сигналы на основе плотности ионизации различных типов излучения.

Разделение сигналов с аналоговым интегрированием

Эффективность регистрации тепловых нейтронов

Порог для отбора нейтронных сигналов ~ 360 фотонов

Эффективность регистрации тепловых нейтронов от 12% до 13%

https://doi.org/10.1016/j.nima.2025.170547

Коррекция на атмосферное давление

$$N(t) = N_0 \cdot e^{-\beta(P(t) - P_0)}$$

β – барометрический коэффициент
N (t) – скорректированный темп счета нейтронов
P(t) – атмосферное давление
N₀ – измеренный темп счета нейтронов
P₀ = 993 мбар

	D_1	D_2	D_3	D_4	P-36
β, %/мбар	0.49	0.72	0.57	0.60	0.79

Влияние снежного покрова

Корреляции скорости счета с высотой снежного покрова

	D 1	D 2	D 3	D 4	P-36		
	<i>k</i> , %/см						
2022	-0.05	-0.26	-0.11	-0.06	_		
2023	-0.05	-0.26	-0.08	-0.12	-0.34		
2024	_	-0.33	-0.06	-0.09	-0.36		

Определение амплитуды Форбуш-понижений

$$I_{\rm B\Pi}^{i}(t) = I_{\rm c}^{i}(t) - I_{\rm c(anp)}^{i}(t) + I_{c}(t_{\rm H})$$

$$I_{\rm c(anp)}^{k}(t) = A - \left(A - I_{c}(t_{\rm K})\right) \cdot e^{\left(\frac{t_{\rm K}-t}{\tau}\right)}$$

$$I_{\rm B\Pi}^{k}(t) = I_{\rm c}^{k}(t) - I_{\rm c(anp)}^{k}(t) + I_{c}(t_{\rm K})$$

$$A_{i}^{n} = \frac{\langle I_{\rm B\Pi}^{i,n} \rangle - \langle I_{\rm B\Pi}^{k} \rangle}{\langle I_{\rm B\Pi}^{i,n} \rangle} \cdot 100\%, \qquad A_{\phi\Pi} = \langle A_{i}^{n} \rangle.$$

		D1	D 2	D 3	D 4	Pr-36	МНМ	
	дата события	A _{φn} , %						
	24.03.2024	5.17±0.38	11.20±0.46	9.39±0.30	10.30±0.37	11.30±0.10	10.60±0.11	
	10.05.2024	5.57±0.57	12.40±0.28	8.47±0.12	11.72±0.11	10.30±0.07	10.12±0.07	
	15.06.2024	0.89±0.44	3.15±0.20	1.60±0.27	2.64±0.18	2.45±0.20	2.25±0.05	
	06.10.2024	3.28±0.29	5.98±0.47	3.23±0.38	3.91±0.15	6.65±0.29	6.12±0.16	
	10.10.2024	5.98±0.13	8.32±0.52	7.02±0.27	7.23±0.47	8.25±0.15	8.90±0.04	
4	26.10.2024	-	2.63±0.17	1.98±0.36	2.24±0.29	2.30±0.13	2.59±0.07	
	28.10.2024	1.75±0.02	4.09±0.25	2.77±0.40	2.89±0.34	3.89±0.25	3.18±0.19	
	17.12.2024	1.68±0.41	2.56±0.45	2.06±0.18	2.74±0.29	_	2.69±0.20	

Детекторы обеспечивают определение амплитуды Форбуш-понижений на уровне значений Московского нейтронного монитора.

Зависимость амплитуды ФП от толщины вещества над детектором

d, g/cm^2

- Неэкранированные нейтронные детекторы позволяют проводить исследования форбуш-понижений КЛ.
- Неэкранированные нейтронные детекторы обеспечивают определение амплитуды ФП на уровне значений Московского нейтронного монитора.
- Установки «Нейтрон» и ПРИЗМА-36 позволяют исследовать ФП под разной толщиной поглотителя и соответственно от разной энергии адронов.

Спасибо за внимание

DMGromushkin@mephi.ru