The 5th International Symposium on Cosmic Rays and Astrophysics

Байкальский нейтринный эксперимент: статус и результаты

Ж. Джилкибаев Коллаборация Байкал, Москва, 24.06.2025

Global neutrino network

P-One, >1 prototyping stag

ANTARES Stopped on 16.02.2022

IceCube 1 km³ Data taking since 2011 IceCube-Gen2 10 km³ R&D phase

KM3NET, 1 km³ **Being deployed** since 2016

Baikal-GVD, 1 km³ Being deployed since 2015

Baikal-GVD Collaboration

- Institute for Nuclear Research of the Russian Academy of Sciences, Russia • Joint Institute for Nuclear Research, Russia
- Irkutsk State University, Russia
- Skobeltsyn Research Institute of Nuclear Physics, Russia
- St. Petersburg State Marine Technical University, Russia
- National Research Nuclear University MEPHI, Russia
- P.N. Lebedev Physical Institute, Russia
- Comenius University, Slovakia
- Czech Technical University in Prague, Czech Republic
- Institute of Nuclear Physics ME RK, Kazakhstan

~ 65 physicists and engineers

Baikal-GVD Site

- Southern basin of the lake
- ~3.6 km offshore
- Flat area at depths 1366–1367 m
- High water transparency: \bullet
 - Absorption length: 22 m \bullet
 - Effective scattering length: 480 m
- Moderately low optical background: 15–50 kHz
- Deployment from the ice cover of the lake

Baikal-GVD Status April 2025

- 4392 Optical modules on 122 strings (14 clusters)
- 8 strings form a cluster independent array of optical modules
- 36 optical modules per string
- 60 m between strings in a cluster, 250-300 m between clusters
- More than 0.6 km³ of water volume
- 8 laser stations/inter-cluster strings
- More than 400 acoustic modules for positioning
- LED beacons and powerful laser sources for calibration
- 4 experimental strings with the fibre-optic DAQ for testing of new equipment
- 2 prototype string for the next-generation telescope (12 OMs + 24 OMs)

Event Topologies

Single-cluster tracks

- Low energy threshold
- Optimal sensitivity to nearly vertical tracks
- 90% of recorded track events

Single-cluster cascades

- High energy threshold
- Good energy resolution
- Relatively rare events

Main results for today

Multi-cluster tracks

- Moderately low energy threshold
- Optimal sensitivity to inclined tracks
- Best angular resolution

NC, v ν_CC

 $\nu_{\mu} CC$

Multi-cluster cascades

- Very high energy threshold
- Excellent energy resolution
- Very rare events

- In tracks analysis seasons 2019-2023 were processed in single-cluster regime
- Signal and background MC samples for these seasons are available
- The work is ongoing characterisation of the obtained dataset
- Preliminary high-purity dataset of 1189 tracks from seasons 2019-2021

Track analysis

		ž a	•	1	•	1
		•		•	•	i.
Saacan))))))))))))))		łón	ĥ	or	1
Season A	2020, 3	beh	nen	D	er	5
Cluster 5			· ·			h
			• •	8. j. j.	•	þ
			• •			1
Nuite	37		1		! *	1
	407 0	+	- D			
⊏ ^µ rec	107.2	13	B			
θ	116.7	0"	- E	11. 1.0		•
• rec	4 4 0 4	1	1			•
Ltrack	140.1	Μ				1
		i. I		£.,		
				1	•	
		•	•		•	•
Angula	r nred	isi	ion	1	•	•
Foo/				1	14	1
50%:	0.7				•	
68% [.]	1 0	5		1	1	-
				1	•	•
90%:	1.5			6		Ť
			1	8	0	Į.
		1		2		
				0	• (P
				8	./	•
		ŏ (2	ě (5
		٠ (<u>_</u>	- /	22	5
		0	2	1	2	
		29	4/		2	- 1
		82		2 >	R	
			×	*/ >	1	
		(()	(C	Re l	D	2
		F	×	4	2	2
		/			•	
					8	

Effective neutrino area IceCube (HESE) = 10 GVD Clusters

GVD 10 clusters

Neutrino effective area (m²)

IceCube (HESE)

Astrophysical Diffuse Neutrino Flux Data from 2018-2023: effective livetime - 9778 days/eq.cluster (26.8 yr./cl.)

> All-sky search for HE cascades:

Search for upward moving events: lower energy threshold (E>15 TeV) due to low atmospheric background for cascade detection channel

- threshold of E > 70 TeV allows to observe events from upper hemisphere

All-sky search for HE cascades (2018-2023)

 Ξ

10⁻²

Additional selection requirements: $(N_{hit_\mu} = 0, E_{rec} \ge 70 \text{ TeV}) \text{ or}$ $(N_{hit_\mu} = 1, E_{rec} \ge 100 \text{ TeV})$ N_{hit_μ} is number of hits in time interval where hits from muons are expected

Expected:

14.7 events from atm. muons

- 1.0 events from atm. neutrinos
- 11.6 events for Baikal-GVD best fit
 - E^{-2.58} astrophysical flux Phys.Rev. D107, 042005 (2023)

Found in real data: 27 events

Date	N _{data}	N _{bg}	P-value	Significance (no syst.)
18-21	16	8.2	2.09×10 ⁻²	2.31σ
18-23	27	15.7	3.19×10 ⁻³	2.73σ

Energy distribution (18-23)

cosθ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

0.4 0.6 0.8

Search for upward moving events (2018-2023) Energy distribution (18-23)

Selection requirements:

 $E > 15 \text{ TeV \& N_{hit}} > 11 \& \cos\theta < -0.25$

Expected: 1.0 events from atm. muons 5.3 events from atm. neutrinos 18.9 events for Baikal-GVD best fit E^{-2.58} astrophysical flux

Found in data: 25 events

Date	N _{data}	N _{bg}	P-value	Significance (no syst.)	
18-21	11	3.2	1.76×10 ⁻³	3.13σ	
18-23	25	6.3	1.5×10 ⁻⁸	5.54σ	

Zenith distribution (18-23)

Search for upward moving events (2018-2023) Energy distribution (18-23)

Selection requirements:

 $E > 15 \text{ TeV \& N_{hit}} > 11 \& \cos\theta < -0.25 N_{hit \mu} < 2$

Expected: 0.9 events from atm. muons 1.9 events from atm. neutrinos 14.6 events for Baikal-GVD best fit E^{-2.58} astrophysical flux

Found in data: 18 events

Date	N _{data}	N _{bg}	P-value	Significance (no syst.)	Sig (st
18-23	18	2.5	2.15×10 ⁻¹⁰	6.24σ	

Excess over the atmospheric background: 5.1 σ !!!

Zenith distribution (18-23)

Single pawer-low model of isotropic astrophysical flux: $(v_e: v_\mu : v_\tau = 1:1:1)$ tro

 $\Phi^{\nu+\overline{\nu}} = 3 \times 10^{-18} \,\varphi_{astro} \,\left(\frac{E}{10^5}\right)$

Baikal-GVD best fit parameters:

spectral index $\gamma_{astro} = 2.64$

One flavor normalization $\varphi_{astro} = 4.42$

$$\left(\frac{E}{105}\right)^{-\gamma_{ast}}$$

 $(GeV \ cm^2 \ s \ sr)^{-1}$

New High-Energy Cascade Sky Map

Data from April 2018 to March 2024

Search for directional association is ongoing

Best fit positions and 90% angular uncertainty regions About half of the events are background from atmospheric muons and neutrinos

Galactic Neutrinos with the Highest Energies

- High-energy cascades April 2018- March 2024 (6 years of operation)
- Test the Galactic excess at E>200 TeV (8 events, 64% of astrophysical) origin)
- Simplest model-independent test using median of galactic latitude |b|med
- Galactic component is visible with a significance of 2.5σ
- IceCube cascades and tracks also demonstrate the Galactic excess
- Fraction of Galactic events reaches several tens of percent at E>200 TeV disagreeing many theoretical predictions

	Sample	$ b _{ m med}$	$\langle b _{ m med} angle$	p
D cascades e cascades Sube tracks		observed	expected	
E>200 TeV	Baikal-GVD cascades	10.4°	31.4°	$1.4 \cdot 10^{-2}$ (2)
	IceCube cascades	12.4°	31.9°	$8.7 \cdot 10^{-3}$ (2)
	combined cascades	12.4°	31.5°	$1.7 \cdot 10^{-3}$ (3)
	IceCube tracks	24.7°	36.0°	$1.8 \cdot 10^{-3}$ (3)
0 80	all cascades+tracks	23.4°	35.0°	$3.4 \cdot 10^{-4}$ (3

Galactic Neutrinos with the Highest Energies

- Very rough estimate of the Galactic neutrino flux is obtained
- Agrees with Galactic gamma-ray diffuse emission by Tibet-ASy
- Some event clustering towards the Cygnus region (the brightest region of diffuse γ -ray emission in the northern sky)

E, TeV

Ultra High Energy neutrino flux limit KM3-230213A:

IceCube – track and cascade detection modes

Baikal-GVD – cascade detection mode

Most energetic upgoing cascade event Best candidate for neutrino events of astrophysical origin

Closest sources (in 6 degrees):

- This event is probably of astrophysical origin (signalness = 97%).
- Chance probability of coincidence p=0.0074 (2.7 σ)

TXS 0506+056 Blazar (BL Lac) at z= 0.34 (5.7 Gly) is IceCube neutrino source observed at 3.7 σ

Monthly Notices of the Royal Astronomical Society, Volume 527, Issue 3, January 2024, Pages 8784–8792

Event Triplet near Galactic Plane Intriguing events

Monthly Notices of the Royal Astronomical Society, Volume 526, Issue 1, November 2023, Pages 942–951

Baikal-GVD Follow-up of IceCube-211208A / PKS 0735+17

- Fast processing system for transient sources has been working since 2021
- Dec 8, 2021 20:02: IceCube "Astrotrack Bronze" neutr event in the vicinity of the bright blazar PKS 0735+17
- Active state of PKS 0735+17 reported in optical (MASTER), HE gamma-rays (Fermi LAT), X-rays (Swift XRT) and radio
- Baikal-GVD found a downward-going (30° above horizon) cascade-like event 4 hours after the IceCube alert and in 5.3° from it and 4.7° from PKS 0735+17
 - E ≈ 43 TeV
 - PSF 50% (68%) containment radius = $5.5 \deg (8.1 \deg)$
 - Pre-trial p-value = 0.0044 (2.85 σ) [24 hr, 5.5 deg cone]
 - Trial factor ~ 40 (total number of IceCube alerts) analysed)

r	r)	()	

Astronomy telegram ATeL 15112 was sent https://www.astronomerstelegram.org/?read=15112

	5.000 10.000 15.000 20.000 25.000 5	0.000 O CRATES (\$ 0826+ ¢	125 000 233 ↓ 180 SDSS 10 86 J0812 NV9S J	120 (Baikal RX 1 +195836 075936.1 1 tk50 5 080204+	000 11 GVD 01 275 00749x2+2 PKS 0 10749x2+2 9 PKS 0 1074 3+13211 0+117 100639	5.000 7313 9735+1 9735+1 1743				
0.0	086 0).026	0.06	0.13	0.27	0.54	1.1	2.2	4.3	

	PKS0735+178 poten associated with Ice0 211208A and Baikal- 211208A with the KM
15148	NIR followup of the PKS 0735+178
15143	Baksan Undergroun Scintillation Telesco observation of a Gel candidate event at th a gamma-ray flare o blazar PKS 0735+17 possible source of o IceCube and Baikal energy neutrinos
15136	Optical and near-inf observations of PKS 0735+178
15132	Optical view of neut emitter candidate PI +178
15130	Re-brightening of th object PKS 0735+17 observed by Swift
15129	Fermi-LAT observat flaring activity from 27 and PKS 0735+17
15113	NuSTAR observation blazar PKS 0735+17
15112	Baikal-GVD observa high-energy neutrino candidate event fror blazar PKS 0735+17 of the IceCube-21120 neutrino alert from t direction
15109	Swift monitoring of t Lac object PKS 0735 during a bright state
15108	SRG/eROSITA obser PKS 0735+17
15106	Search for counterp IceCube-211208A wi ANTARES
15106	Search for counterp IceCube-211208A wi ANTARES TELAMON, Metsaho Medicina, OVRO and 600 programs find a radio flare in PKS07 coincident with IceC 211208A
15106 15105 15102	Search for counterp IceCube-211208A wi ANTARES TELAMON, Metsaho Medicina, OVRO and 600 programs find a radio flare in PKS07 coincident with IceC 211208A Swift-XRT observati blazar PKS 0735+17 flaring state
15106 15105 15102 15100	Search for counterp IceCube-211208A wi ANTARES TELAMON, Metsaho Medicina, OVRO and 600 programs find a radio flare in PKS07 coincident with IceC 211208A Swift-XRT observati blazar PKS 0735+17 flaring state Significant optical d brightening in blaza 0735+17 coincident IceCube-211208A
15106 15105 15102 15100 15099	Search for counterp IceCube-211208A wi ANTARES TELAMON, Metsaho Medicina, OVRO and 600 programs find a radio flare in PKS07 coincident with IceC 211208A Swift-XRT observati blazar PKS 0735+17 flaring state Significant optical d brightening in blaza 0735+17 coincident IceCube-211208A Fermi-LAT Gamma-I Observations of Icef 211208A
15106 15105 15102 15100 15099 15098	Search for counterp IceCube-211208A wi ANTARES TELAMON, Metsaho Medicina, OVRO and 600 programs find a radio flare in PKS07 coincident with IceC 211208A Swift-XRT observati blazar PKS 0735+17 flaring state Significant optical d brightening in blaza 0735+17 coincident IceCube-211208A Fermi-LAT Gamma-r Observations of IceC 211208A MASTER OT J073807.40+174219. brightening during I 211208A observation

GVD+ стратегия развития

- > Увеличение эффективности регистрации нейтрино в области энергий
 - 1 1000 ПэВ за счет увеличения детектирующего объема телескопа
- Повышение разрешающей способности в области энергий 1 100 ТэВ за счет
 - оптимизации геометрии GVD (формирование плотного ядра детектора GVD+)
- > Создание системы регистрации медленных частиц монополь Рубакова и др., регистрации вспышек SN, поиск частиц темной материи за счет внедрения новой системы сбора и передачи данных
- ➢ Комплексное исследование галактических (ПэВатроны) и внегалактических объектов в области энергий от сотен ТэВ и выше по данным GVD+, LHAASO, TAIGA

Заключение

- Baikal-GVD является наиболее крупным нейтринным телескопом в Северном полушарии:
 - Детектирующий объем телескопа составляет порядка 0.7 км3
 - Угловое разрешение мюонов составляет 0.5°-1°
 - Эффективная область обзора небесной сферы Baikal-GVD дополняет область обзора IceCube
- строительства телескопа:
 - Зарегистрирован диффузный поток нейтрино со значимостью выше 5σ
 - Выявлены кандидаты на роль локальных источников нейтрино (TXS-0506, LSI+61 303, ...)
 - ПэВ)
- Завершение строительства телескопа Baikal-GVD содержащего порядка 6000 оптических модулей с детектирующим объемом в 1 км³ планируется в 2028/2030

• Получено ограничение на величину диффузного потока нейтрино сверх высоких энергий (E>10

Первые результаты исследования нейтрино астрофизической природы получены уже на этапе

Спасибо за внимание!

