

EAS Maximum Depth from the Space-Time Structure of Cherenkov Light Based on the TAIGA-HiSCORE Data

The 5thInternational Symposium on Cosmic Rays and Astrophysics (ISCRA-2025)

¹Mark Ternovoy, TAIGA collaboration

¹Research Institute of Applied Physics of Irkutsk State University.

The work was supported by the Russian Science Foundation, grant №23-72-00016 (section 2)

Methods for Measuring EAS Maximum Depth

• 10¹⁸ - 10²⁰ eV

Direct observation of X_{max} through ionization light, as in the Pierre Auger and Telescope Array experiments.

Two methods for estimating X_{max} :

- Steepness of the spatial light distribution function (LDF):
 - $P = Q(R_1)/Q(R_2), R_2 > R_1$ (P-method).
- Pulse width at half-height (FWHM), $\tau_{1/2}$ (τ -method).

Similarity of Cascade Curves

- Cascade curves describe the electron density in a shower as a function of atmospheric depth;
- The shapes of cascade curves, which determine the electron density in a shower as a function of atmospheric depth, are nearly identical for different types of primary particles. CORSIKA simulations confirm this fact;
- Therefore, the shower maximum depth X_{max} can be considered the primary parameter for assessing the mass composition.

X_{max} Dependence on Primary Composition

- The difference between primary compositions at 10 PeV (lg (E/TeV) = 4) can be divided into approximately 4 equal parts:
 - Proton 630 g/cm²;
 - Helium 590 g/cm²;
 - Nitrogen 550 g/cm²;
 - Iron -510 g/cm^2 .

The difference between proton and iron compositions is ~120 g/cm²;

Proton

$$X_{max} = -1.798 \cdot \log E / TeV^2 - 71.355 \cdot \log E / TeV + 373.53$$

$$X_{max} = -3.888 \cdot \log E / TeV^2 - 103.00 \cdot \log E / TeV + 160.76$$

Current Status of the TAIGA-HISCORE Array

- The array covers an area of up to 1 km² with 114 stations in **zenith** (2022-2023 season, autumn 2023) or **inclined** orientation (2021-2022, 2023-2025);
- In full configuration with 4 clusters **from 2021 to the present.**
- Each station is equipped with a set of four large photomultiplier tubes (PMTs). The time resolution of each station is 10 ns. Time step is 0.5 ns.

Simulations for X_{max} Determination Methods

- To analyze the possibility of determining the shower maximum depth using methods applied at HiSCORE, simulations were conducted with the following parameters:
 - CORSIKA+(QGSJet-II-04 or Sybill2.3d) + GHEISHA2002d;
 - Primary energy: 1,3,10,30,100 PeV;
 - Angles: 0, 30°;
 - Primary particles: proton, helium, iron;
 - No statistical thinning;
 - The Cherenkov light simulation option was also used (bunch=1 ph), which significantly increased the computational time per shower (by 15-20 times).

Pulse Width (FWHM) Measurement at HiSCORE

- To estimate pulse duration in the experiment, signals from the anode channels of PMTs are used. The general data processing algorithm includes several stages:
 - o Signals are time-shifted by 0.5 nanoseconds to improve measurement accuracy;
 - o Signals from four PMTs at a single station are summed to obtain the resulting pulse;
 - o After summation, the resulting pulses are convolved with the station's instrumental function.

The instrumental function is characterized by a duration of about 10 nanoseconds for anode channels.

o To account for instrumental effects, pulses from simulations (CORSIKA) are convolved with these characteristics to reproduce their behavior in the real experiment.

τ -Method for Determining X_{max}

• According to simulation data, pulse duration increases with distance.

τ-Method for Determining X_{max}

 Point distributions are compiled from primary compositions for energies of 10, 30, 100 PeV and two angles (0-30°), with an instrumental function of FWHM = 9.2 ns.

Anode Channel:

•
$$205 \text{ M}: \Delta X_{max} = -1465.0 \cdot \log \tau + 2291.1$$
,

•
$$255 \text{ M}: \Delta X_{max} = -1333.2 \cdot \log \tau + 2274.8,$$

 $\sigma = \pm 10.17 \text{ g/cm}^2$

•
$$305 \text{ M}$$
: $\Delta X_{max} = -1244.3 \cdot \log \tau + 2285.5$, $\sigma = \pm 11.30 \text{ g/cm}^2$

- $355 \text{ M}: \Delta X_{max} = -1212.3 \cdot \log \tau + 2360.9$
- $405 \text{ M}: \Delta X_{max} = -1205.7 \cdot \log \tau + 2462.0$

Correlation of X_{max} Relative Position and LDF Steepness

- Steepness: P = Q(80)/Q(200)(parameter introduced in 2021);
- Relative position of the maximum: $\Delta X_{max} = X_0/\cos\theta - X_{max}$ (relative to the observation array);
- The shower maximum depth is determined using the ratio of light flux at distances of 80 and 200 m from the axis.

P vs ΔX_{max} Dependence

- Good fit, only p+He, 0-30°: $\Delta X_{max} = -98 \cdot P + 922$, $\sigma = \pm 17.28$ g/cm²
- The experimental steepness distribution is within the sensitivity of P to ΔX_{max} under the given constraints on zenith angle and energy.
- The transformation from parameter P to ΔX_{max} is independent of:
 - Energy $(10^{15} 10^{16} \text{ eV})$,
 - Zenith angle of the shower (0° - 30°),
 - Hadron interaction model.

Experimental Dependence of $\langle X_{max} \rangle$ on Primary Energy

TAIGA-HISCORE:

- For the **τ-method**: vertical configuration of the 2022-2023 season, 3383 events in the 10-130 PeV range;
- 29 events above 100 PeV, 844 events at >30 PeV.
- For the **P-method**: 2021-2024 seasons, 905283 events <30 PeV.
- 4 clusters (114 stations);
- Zenith angles $\theta \le 30^\circ$;
- Effective area 1 km².

Average Mass Composition $\langle \ln A \rangle$

• Direct dependence $(\ln A) \sim (X_{max})$ by linear interpolation:

$$\langle \ln A \rangle = \frac{X_{max}^p - X_{max}^{data}}{X_{max}^p - X_{max}^{Fe}} \cdot \ln 56$$

- The **QGSJet-II-04** model was used to recalculate $(\ln A)$.
- For comparison, data from the LHAASO, Pierre Auger Observatory, Telescope Array, TALE and Tunka-133 experiments were used.
- Across the entire energy range, a slightly lighter composition (p + He) is observed, but there is a range where the composition becomes heavier.

Conclusion

- Two independent methods for reconstructing the EAS maximum depth (X_{max}) based on TAIGA-HiSCORE data have been developed:
 - The **P-method**, using the steepness parameter of the Cherenkov light spatial distribution function (P = Q(80)/Q(200)),
 - The **\tau-method**, based on the pulse width at a distance of 305 m from the shower axis.
- Linear dependencies for converting parameters P and τ_{305} to ΔX_{max} were established through CORSIKA shower simulations, with a reconstruction accuracy of 10–17 g/cm².
 - For the τ -method, the experimental statistics will increase by 3 times; new improvement take into account noises for pulses in simulations."
- Based on TAIGA-HiSCORE data from the 2021–2024 seasons, the average maximum depth $\langle X_{max} \rangle$ and the average logarithm of the atomic number $\langle \ln A \rangle$ were determined, confirming the heavier composition of cosmic rays in the $3 \cdot 10^{15}$ – $3 \cdot 10^{16}$ eV range and its lighter composition at energies above $3 \cdot 10^{16}$ eV.