The 5th International Symposium on Cosmic Rays and Astrophysics (ISCRA-2025)

The systematics of the theoretical studies of the muon excess in UHECR

R. V. Nikolaenko, A.A. Petrukhin

rvnikolaenko@mephi.ru

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) Moscow, 24-26 June 2025

Unknown functions in UHECR physics

EAS measurements (for details see Dembinski et al., DOI: https://doi.org/10.1051/epjconf/201921002004)

EM component measurements Note: strongly influenced by hadronic cascade model	
Measurement	Agree with models
Proton-air cross-section (PAO, TA)	+
Longitudinal shape (CC) + X_{max}	+*
Moments of X_{max} -distribution (PAO)	+
Lateral density profile (IceCube)	+/-**
Attenuation with zenith angle (TA, KASCADE-Grande)	+

* Some unphysical second moments for QGSJET-II-04 ** SIBYLL-2.1 and EPOS LHC inconsistent with combined measurements with muons

Muon measurements		
Measurement	Agree with models	
Lateral density (WHISP Collaboration)	-	
Production depth (height) (PAO, KASCADE-Grande)	-/+	
Attenuation with zenith angle (KASCADE-Grande)	-	
Multiplicity in muon bundles (ALICE, DECOR)	-*	
Mean muon energy in bundles (NEVOD-DECOR)	-	
Atmospheric flux of TeV muons (IceCube)	+/-	
Lateral separation of TeV muons (IceCube)	**	
Rise-time of shower front (PAO)	-	
* The relative abundance is well reproduced by QGSJET-II-04 ** Partial agreement only for SIBYLL-2.1		

3

The Muon Puzzle: current status

From J.C. Arteaga, ISVHECRI-2024, WHISP's combined muon analysis

• After energy cross-calibration

The hypotheses classification: by source

The hypotheses classification: by physics change type

Light particle retention (1/2): High-Rotation Quark-Gluon Matter (HR-QGM) model

- High-energy non-central nuclei collisions produce a QGP fireball with huge angular momentum
- In the assumption of the system elasticity and continuous lifespan, a centrifugal barrier for particle of mass *m* appears:

$$V_{\rm cb} = \frac{J(J+1)}{2mb^2}.$$

- The centrifugal barrier prevents lightest hadrons to escape the QGP fireball.
- Targeted scenario strange mesons and baryons enhancement.
- Hard to distinguish from regular QGP scenario
- Does it affect particle production at freeze-out?
- Contribution in the case of light CR systems?
- Should be well observed in PbPb at the LHC

NE

Light particle retention (2/2): Chiral Symmetry Restoration (CSR) model

NP

HE

- Based on the Nambu-Goldstone CSR model
- When chiral symmetry is broken, pions (pseudo-Goldstone bosons) with $m_\pi < \Lambda_{\rm QCD} \approx 200$ MeV can be produced
- Nuclei collisions in UHECR create a very high temperature phase -> chiral symmetry could be restored

G.R. Farrar and J.D. Allen, 2013, DOI: 10.1051/epjconf/20135307007

- With CSR light mesons (with $m \leq 500$ MeV) cannot be produced -> light pion suppression
- No rigorous calculations of the effect
 - Initial conditions?
 - Impact?
 - Why not observed in PbPb at LHC?

Color Glass Condensate (CGC) and Glasma models

Enhanced Parton Models (EMP) + string interactions

HE

NE

10¹⁰

10¹¹

Lorentz Invariance Violation (LIV) models

HE

NP

AP NP

MM

14

SQM simulation with EPOS: A=500, hypernucleus compressed of Λ_0

EPOS LHC-R

- The Muon Puzzle remains a challenging problem after more than 10 years of its study.
- Many models have been proposed in order to resolve the puzzle.
 - Most hypotheses focus on the models of high-energy physics;
 - > Hadronic interaction models offer most space for improvement and changes;
 - > Alternative approaches appear -> more tests required!
- The main challenge is to perform a complete calculation within the framework of the proposed changes
 - > Only EPOS LHC-R model stays within its basic physics from PCR to EAS properties.
 - > The exotic scenarios are usually hard to quantify rigorously.
- The most probable explanation includes **both** collective effects and single-string modifications in hadronic models.

Thank you for your attention!

BACK UP SLIDES

Simulations in UHECR physics: a main source of uncertainties

The Muon Puzzle: current status

From H. Dembinski et al., DOI: https://doi.org/10.1051/epjconf/201921002004

- Non-zero slope independent of assumed correlations in uncertainties.
- The trend is clearly seen starting with ~10¹⁷ eV, so the physics nature of the muon puzzle should be seen at LHC energies.

Equivalent energy in cosmic rays: \sqrt{s} vs $\sqrt{s_{NN}}$ and proton vs iron primary

- √s-transition as if colliding particles have no inner structure – only total CM energy matters
- $\sqrt{s_{NN}}$ -transitions is based on assumption that physics is defined by binary N-Ncollision energy

- Equivalent energy depends on the assumed primary particle mass higher heavy PCR nuclei energy corresponds to LHC.
- √s-transition undermines inner structure of hadrons and is incorrect not all collision energy is transferred into hard processes.
- But \sqrt{S_NN}\$-transition does not cover the full picture either: hadronization process deals with the total energy of the entire fragmenting parton system.
 B3

Problems with hadron production

Invariant cross section for π^0 production, ratio to fit

