Potassium influence on Earth's mantle convection and Borexino data.

The 5th International Symposium on Cosmic Rays and Astrophysics (ISCRA-2025)

Ivan Karpikov Institute for Nuclear Research RAS

Motivation What proportion of potassium in the Earth does Borexino allow? October 100 Antineutrino, beta and neutrino 40 K spectra. Recoil electron spectrum produced by antineutrinos and neutrinos from 40 K. INR analysis with 40 K account. Red line $^{-40}$ K spectrum. R(CNO) = 3.9 ± 1.6 cpd/100t (low metal model) 80 R(40 K) = 11 ± 2 cpd/100t

Boussinesq approximation Thermal convection nondimensionalized equations

We solved the following nondimensionalized equations of mass, momentum, energy, and conservation in 2-D spherical annulus geometry for incompressible mantle flow

 $\chi^2 = 175$

$$-\nabla P + \nabla \cdot [\eta(\nabla \mathbf{V} + (\nabla \mathbf{V})^T)] = RaT\mathbf{e_r}$$
$$\nabla \cdot \mathbf{V} = 0$$
$$\frac{\partial T}{\partial t} + (\mathbf{V} \cdot \nabla)T = \nabla \cdot (\kappa \nabla T) + H(t)$$

Here **V** is the velocity vector, P is the pressure, T is the temperature, t is the time, η is the coefficient of dynamic viscosity, κ is the coefficient of thermal diffusivity, H(t) is the heat source. Ra is the Rayleigh number, defined as

$$Ra = \frac{\alpha \cdot \rho_0 \cdot g \cdot \delta T \cdot D^3}{\eta_0 \cdot \kappa_0}$$

with α the surface thermal expansivity; g the gravitational acceleration; ΔT the temperature drop across the mantle; ρ the reference density; η_0 the reference viscosity; D the thickness of the mantle

Results of mantle convection modeling for Ra = 10⁵

Dependence of temperature T on depth r for different amounts of 40 K concentration

Dependence of mean convection velocity V cm/yr on depth r for different amounts of 40 K concentration

External water tank

Ropes

Nylon outer vessel
Nylon inner vessel
Fiducial volume

Steel plates
for extra
shielding

Muon
PMTs

Borexino detector

- Overburden 4200 m.w.e.
- Liquid scintillator volume 315 m3 placed in thin (125 um) nylon film.
- Single events from neutrinos and antineutrinos are detected. Mainly from the Sun
- Due to radioactive containment of the film sensitive volume was decreased down to 73 t.

Borexino measurement result in 2022.

 $R_{CNO} = 6.7$ events per d/100 tons

Estimation of heat flow from 40K

Potassium makes up about 2.6% of the weight of the Earth's crust.

High neutrino count rate from ⁴⁰K in data Borexino indicates its high abundance throughout the Earth.

Taking into account its isotopic abundance 0.0117%, the total amount of potassium in the all Earth is 3.2%.

$$m(^{40}K) = 2.1 \cdot 10^{22} g$$

 $H = (m(^{40}K) \cdot N_a \cdot E_{release} \cdot \alpha) / (A \cdot \tau),$

where N_a - Avogadro number, A - atomic number, $E_{release}=0.6$ MeV - average energy release in 40 K decay, $\tau=t_{1/2}$ / ln2 - mean lifetime of isotope, α - the conversion factor 1 MeV = $1.6 \cdot 10^{-13}$ J

This amount of ⁴⁰K results in a total heat flow of about **600 TW**!

While the entire heat flow of the Earth is 47 TW

The question arises:

how does the increased content of radioactive potassium affect the Earth's thermal balance?

Initial and boundary conditions Simulation parameters

- $\Delta T = 3700 \text{K}$
- $\eta_0 = 5 \times 10^{21} \text{Pa·s}$
- $\kappa = 10^{-5} \text{ m}^2/\text{s}$
- $c_p = 1.25 \times 10^3 \text{ J/(kg K)}$
- $Ra = 10^5$ and $Ra = 10^6$

Heat sources from ⁴⁰K inside the mantle

No leakage condition $\mathbf{V}|_{r=0} = \mathbf{V}|_{r=D} = 0$

Temperature at the mantle-crust boundary

 $T|_{r=0} = 0.12 \Delta T = 420 K^0$

Temperature at the mantle-core boundary $T|_{r=D} = 1.12 \Delta T = 3920 K^0$

Initial conditions V = 0

 $T = \Delta T = 3500 \text{ K}^{\circ}$

 $H(t) = H_0 \cdot exp(-t/t_{40}_K)$ $t_{max} = 4500 \text{ Myr}$

, where $H_0 = H_{now} \cdot exp(t_{max}/t_{^{40}K})$

• Low ⁴⁰K concentration $H_{now} = 5 \times 10^{-12} \text{ W/kg}$ 20

• High 40 K concentration $H_{now} = 15 \times 10^{-12}$ W/kg 60 TW

Results of mantle convection modeling for Ra = 10⁶

Discussion and conclusion

- We provide the indication of high flux of 40 K geo-antineutrino and geo-neutrino (40 K-geo-(v + v)) with Borexino Phase III data
- Large geoneutrino flux from 40 K indicates low metallicity of the Sun
- The abundance of potassium in the range 2 4% from the Earth mass can give such flux.
- We modeled the heat distribution in the Earth taking into account the heat from the high 40 K concentration.
- At sufficiently large Rayleigh numbers, excess heat from 40 K is transferred to mantle convection.

