# ENDA-INR extensive air shower experiment

# Kurinov K.O.<sup>1</sup>, Kuleshov D.A.<sup>1</sup>, Maliy I.O.<sup>2</sup>, Stenkin Yu.V.<sup>1,2</sup>, Stepanov V.I.<sup>1</sup>, Shchegolev O.B.<sup>1,2</sup>

<sup>1</sup>Institute for Nuclear Research, Russian Academy of Sciences <sup>2</sup>Moscow Institute of Physics and Technology

> ISCRA-2025 June 24-26, 2025

| ENDA-INR<br>00 | Registration methodology<br>O | Simulation and reconstruction of EAS | Preliminary results |
|----------------|-------------------------------|--------------------------------------|---------------------|
| Outline        |                               |                                      |                     |



- **2** Registration methodology
- **3** Simulation and reconstruction of EAS
- **4** Preliminary results

| ENDA-INR<br>●○ | $\underset{\bigcirc}{\text{Registration methodology}}$ | Simulation and reconstruction of EAS | Preliminary results |
|----------------|--------------------------------------------------------|--------------------------------------|---------------------|
| ENDA-INI       | R                                                      |                                      |                     |

ENDA-INR is a prototype of the ENDA cluster (consists of 16 en-detectors), located on the territory of INR RAS in Moscow. Used to study EAS (for energy above 1 PeV), testing registration methods and methods for signal processing.

**Some parameters:** array size -  $15 \times 15 m^2$ , neutrons recorded time interval: from 100  $\mu s$  to 5 ms after EAS passage<sup>1</sup>.



View of the array



ENDA-INR configuration and en-detector scheme

<sup>&</sup>lt;sup>1</sup>Shchegolev O.B. et al. J. Phys. Conf. Ser. 1690 (2020). DOI: 10.1088/1742-6596/1690#1/012011 + € 🖹 → 🖉 🗠 🔍

| ENDA-INR<br>○●  | $\underset{\bigcirc}{\text{Registration methodology}}$ | Simulation and reconstruction of EAS  | Preliminary results |
|-----------------|--------------------------------------------------------|---------------------------------------|---------------------|
| Prototype start | working in data acquisition r                          | node since September of 2021, since 2 | 20 September        |

of 2023 all detectors works on Beijing Hamamatsu CR-165.



Daily duty cycle, %

Counting rate of M3 trigger

Data from 20.09.2023 to 05.02.2025. Duty cycle  $\sim$  96.1%. Mean number of background neutrons per event - 0.47. Delete unstable periods of array work, and events with noise. Select events with number of triggered detectors  $\geq$  10 with  $A \geq$  6mV.



4 / 11

## Selection signals from thermal neutrons



#### Waveform of an EAS event.



CNN architecture<sup>a</sup>.



#### The profile of the pulse front

・ロト ・回ト ・ヨト ・ヨト

5/11

E

<sup>&</sup>lt;sup>a</sup>Kurinov K. O. et al. JETP 136 (2023). DOI: 10.1134/S1063776123040039

| ENDA-INR<br>00 | $\underset{\bigcirc}{\text{Registration methodology}}$ | Simulation and reconstruction of EAS ${\scriptstyle \bullet \circ}$ | Preliminary results |
|----------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------|
| Simulation     |                                                        |                                                                     |                     |

**EAS simulation:** CORSIKA-7.56, EGS4 option, (QGSJET-II-04 and GHEISHA). <u>Tresholds:</u>  $\gamma$ ,  $e^{\pm}$ ,  $\pi^0$ : 60 keV,  $\mu$ : 100 MeV, h: 50 MeV.Altitude 170 m above sea level. Primary energy range 1  $\div$  100 PeV. The zenith angle range: 0  $\div$  45. Primary particles: p, He, N, Fe. **Detector simulation:** Fast simulation program that based on Geant4 simulation program.



Dependence of  $N_n$  from total energy deposit

# **Reconstruction** (EAS parameters)

Maximum Likelihood Estimation with Lagutin (Uchaikin) modification function:

$$ho_e(r,s_\perp)=m^{-2}
ho_{\sf NKG}(rac{r}{m},s_\perp)$$
 where m = 0.78 - 0.21  $s_\perp$  and 0.6  $\leq s_\perp \leq$  1.8.



## Experimental results (neutrons time distributions)

Time distribution of thermal neutrons can be described as:  $y_t = A * e^{-t/\tau_1} + B * e^{-t/\tau_2} + C$ , where  $\tau_1 = 0.54$  ms,  $\tau_2 = 8.00$  ms,  $C = 1.6 * 10^{-3} ms^{-1}m^{-2}$ . Dashed line - background estimated by zero master =  $0.47 \frac{n}{event}/S_{det}/N_{det}/Time^{reg} = 1.6 * 10^{-3} ms^{-1}m^{-2}$ , bin width - 0.1 ms. Flux of thermal neutrons on the sea level  $\sim 10^{-3} cm^{-2}s^{-1}$ .<sup>2</sup>



Time distributions

 $<sup>^2</sup>$  Gromushkin D. M. et al. Bulletin of the Russian Academy of Sciences: Physics. (2009).  $\in \Xi \mapsto \oplus \Xi = \mathcal{O} \land \mathcal{O}$ 

## Neutrons Lateral Density Function (LDF)

LDF can be described by double exponential function:  $\rho_n = A * e^{-R/r_1} + B * e^{-R/r_2} + C$ . where  $r_1 = 1.24$  m,  $r_2 = 6.01$  m. PRISMA-32:  $r_1 = 1.4 \text{m}, r_2 = 8.2 \text{m}.$ Kempa fit - theoretical LDF for hadrons in EAS<sup>3</sup>. Background - (Poisson  $[\mu = 0.47]$ ).



<sup>3</sup>Kempa J., Nuovo Cimento 3<u>1A (1976) 568 and 581.</u>

| ENDA-INR<br>00 | $\underset{\bigcirc}{\text{Registration methodology}}$ | Simulation and reconstruction of EAS $_{OO}$ | Preliminary results |
|----------------|--------------------------------------------------------|----------------------------------------------|---------------------|
| Conclusion     |                                                        |                                              |                     |

- ENDA-INR works in stable data acquisition mode.
- Neutrons time distribution, dependence of total energy deposit from the number of registered neutrons and lateral density function of neutrons have been obtained.
- Results showed good agreement with the simulation results and also with the data previously obtained at the PRISMA-32<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup>Gromushkin D. M., Volchenko V. I., Petrukhin A. A., et al., Phys. At. Nucl. 78,□349, (2015). « 🖹 ト 🛛 🖹 - 🕫 🧠 🤍 🤇

# Thanks for your attention!

 $11 \, / \, 11$ 

E

イロト イヨト イヨト イヨト